
If \[x{\text{ }} = {\text{ }}2{\text{ }}log{\text{ }}cot{\text{ }}t\] and \[y{\text{ }} = {\text{ }}tan{\text{ }}t{\text{ }} + {\text{ }}cot{\text{ }}t,\] $ \dfrac{{dy}}{{dx}}\sin 2t + 1 $ is equal to
\[\begin{array}{*{20}{l}}
{A){\text{ }}co{s^2}t} \\
{B){\text{ }}si{n^2}t} \\
{C){\text{ }}cos2t} \\
{D){\text{ }}2co{s^2}t}
\end{array}\]
Answer
589.2k+ views
Hint: In order to solve this question, we will start with differentiating the given equations with respect to t, then afterwards we will divide the two differential equations, now after substituting the values we will get the required answer.
Complete step-by-step answer:
Step 1: We have been given, \[x{\text{ }} = {\text{ }}2{\text{ }}log{\text{ }}cot{\text{ }}t.\]
On differentiating the above equation with respect to t, we get
$ \dfrac{{dx}}{{dt}} = \dfrac{2}{{\cot t}}( - cose{c^2}t) $ \[ \ldots ..eq.\left( 1 \right)\]
Also, we have been given, \[y{\text{ }} = {\text{ }}tan{\text{ }}t{\text{ }} + {\text{ }}cot{\text{ }}t.\]
On differentiating the above equation with respect to t, we get
$ \dfrac{{dy}}{{dt}} = se{c^2}t - cose{c^2}t $ \[ \ldots ..eq.\left( 2 \right)\]
Step 2: Now, dividing \[eq.\left( 2 \right),\] by \[eq.\left( 1 \right)\], we get
$ \begin{gathered}
\dfrac{{dy}}{{dx}} = \dfrac{{se{c^2}t{\text{ }}-{\text{ }}cose{c^2}t}}{{ - 2cose{c^2}t}}(\cot t) \\
\dfrac{{dy}}{{dx}} = - \dfrac{{\cot t}}{2}({\tan ^2}t - 1) \\
\dfrac{{dy}}{{dx}} = - \dfrac{1}{2}(\tan t - \cot t) \\
\dfrac{{dy}}{{dx}} = - \dfrac{1}{2}(\dfrac{{\sin t}}{{\cos t}} - \dfrac{{\cos t}}{{\sin t}}) \\
\dfrac{{dy}}{{dx}} = - \dfrac{1}{2}(\dfrac{{{{\sin }^2}t - co{s^2}t}}{{\sin t\cos t}}) \\
\dfrac{{dy}}{{dx}} = \dfrac{{\cos 2t}}{{\sin 2t}} \\
\end{gathered} $
Step: On substituting the value, $ \dfrac{{dy}}{{dx}} = \dfrac{{\cos 2t}}{{\sin 2t}} $ in $ \dfrac{{dy}}{{dx}}\sin 2t + 1 $ , we get
$ \dfrac{{dy}}{{dx}}\sin 2t + 1 $ $ = $ $ \dfrac{{\cos 2t}}{{\sin 2t}}\sin 2t + 1 $
$ \begin{gathered}
= \cos 2t + 1 \\
= 2co{s^2}t \\
\end{gathered} $
So, the correct answer is “Option D”.
Note: Before solving this question, students should learn/remind all the basic required formulas of trigonometry. More importantly one must be thorough with all the differentiation formulae.
Complete step-by-step answer:
Step 1: We have been given, \[x{\text{ }} = {\text{ }}2{\text{ }}log{\text{ }}cot{\text{ }}t.\]
On differentiating the above equation with respect to t, we get
$ \dfrac{{dx}}{{dt}} = \dfrac{2}{{\cot t}}( - cose{c^2}t) $ \[ \ldots ..eq.\left( 1 \right)\]
Also, we have been given, \[y{\text{ }} = {\text{ }}tan{\text{ }}t{\text{ }} + {\text{ }}cot{\text{ }}t.\]
On differentiating the above equation with respect to t, we get
$ \dfrac{{dy}}{{dt}} = se{c^2}t - cose{c^2}t $ \[ \ldots ..eq.\left( 2 \right)\]
Step 2: Now, dividing \[eq.\left( 2 \right),\] by \[eq.\left( 1 \right)\], we get
$ \begin{gathered}
\dfrac{{dy}}{{dx}} = \dfrac{{se{c^2}t{\text{ }}-{\text{ }}cose{c^2}t}}{{ - 2cose{c^2}t}}(\cot t) \\
\dfrac{{dy}}{{dx}} = - \dfrac{{\cot t}}{2}({\tan ^2}t - 1) \\
\dfrac{{dy}}{{dx}} = - \dfrac{1}{2}(\tan t - \cot t) \\
\dfrac{{dy}}{{dx}} = - \dfrac{1}{2}(\dfrac{{\sin t}}{{\cos t}} - \dfrac{{\cos t}}{{\sin t}}) \\
\dfrac{{dy}}{{dx}} = - \dfrac{1}{2}(\dfrac{{{{\sin }^2}t - co{s^2}t}}{{\sin t\cos t}}) \\
\dfrac{{dy}}{{dx}} = \dfrac{{\cos 2t}}{{\sin 2t}} \\
\end{gathered} $
Step: On substituting the value, $ \dfrac{{dy}}{{dx}} = \dfrac{{\cos 2t}}{{\sin 2t}} $ in $ \dfrac{{dy}}{{dx}}\sin 2t + 1 $ , we get
$ \dfrac{{dy}}{{dx}}\sin 2t + 1 $ $ = $ $ \dfrac{{\cos 2t}}{{\sin 2t}}\sin 2t + 1 $
$ \begin{gathered}
= \cos 2t + 1 \\
= 2co{s^2}t \\
\end{gathered} $
So, the correct answer is “Option D”.
Note: Before solving this question, students should learn/remind all the basic required formulas of trigonometry. More importantly one must be thorough with all the differentiation formulae.
Recently Updated Pages
Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

The coating formed on the metals such as iron silver class 12 chemistry CBSE

Metals are refined by using different methods Which class 12 chemistry CBSE

What do you understand by denaturation of proteins class 12 chemistry CBSE

Assertion Nitrobenzene is used as a solvent in FriedelCrafts class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

