
If \[x{\text{ }} = {\text{ }}2{\text{ }}log{\text{ }}cot{\text{ }}t\] and \[y{\text{ }} = {\text{ }}tan{\text{ }}t{\text{ }} + {\text{ }}cot{\text{ }}t,\] $ \dfrac{{dy}}{{dx}}\sin 2t + 1 $ is equal to
\[\begin{array}{*{20}{l}}
{A){\text{ }}co{s^2}t} \\
{B){\text{ }}si{n^2}t} \\
{C){\text{ }}cos2t} \\
{D){\text{ }}2co{s^2}t}
\end{array}\]
Answer
573.6k+ views
Hint: In order to solve this question, we will start with differentiating the given equations with respect to t, then afterwards we will divide the two differential equations, now after substituting the values we will get the required answer.
Complete step-by-step answer:
Step 1: We have been given, \[x{\text{ }} = {\text{ }}2{\text{ }}log{\text{ }}cot{\text{ }}t.\]
On differentiating the above equation with respect to t, we get
$ \dfrac{{dx}}{{dt}} = \dfrac{2}{{\cot t}}( - cose{c^2}t) $ \[ \ldots ..eq.\left( 1 \right)\]
Also, we have been given, \[y{\text{ }} = {\text{ }}tan{\text{ }}t{\text{ }} + {\text{ }}cot{\text{ }}t.\]
On differentiating the above equation with respect to t, we get
$ \dfrac{{dy}}{{dt}} = se{c^2}t - cose{c^2}t $ \[ \ldots ..eq.\left( 2 \right)\]
Step 2: Now, dividing \[eq.\left( 2 \right),\] by \[eq.\left( 1 \right)\], we get
$ \begin{gathered}
\dfrac{{dy}}{{dx}} = \dfrac{{se{c^2}t{\text{ }}-{\text{ }}cose{c^2}t}}{{ - 2cose{c^2}t}}(\cot t) \\
\dfrac{{dy}}{{dx}} = - \dfrac{{\cot t}}{2}({\tan ^2}t - 1) \\
\dfrac{{dy}}{{dx}} = - \dfrac{1}{2}(\tan t - \cot t) \\
\dfrac{{dy}}{{dx}} = - \dfrac{1}{2}(\dfrac{{\sin t}}{{\cos t}} - \dfrac{{\cos t}}{{\sin t}}) \\
\dfrac{{dy}}{{dx}} = - \dfrac{1}{2}(\dfrac{{{{\sin }^2}t - co{s^2}t}}{{\sin t\cos t}}) \\
\dfrac{{dy}}{{dx}} = \dfrac{{\cos 2t}}{{\sin 2t}} \\
\end{gathered} $
Step: On substituting the value, $ \dfrac{{dy}}{{dx}} = \dfrac{{\cos 2t}}{{\sin 2t}} $ in $ \dfrac{{dy}}{{dx}}\sin 2t + 1 $ , we get
$ \dfrac{{dy}}{{dx}}\sin 2t + 1 $ $ = $ $ \dfrac{{\cos 2t}}{{\sin 2t}}\sin 2t + 1 $
$ \begin{gathered}
= \cos 2t + 1 \\
= 2co{s^2}t \\
\end{gathered} $
So, the correct answer is “Option D”.
Note: Before solving this question, students should learn/remind all the basic required formulas of trigonometry. More importantly one must be thorough with all the differentiation formulae.
Complete step-by-step answer:
Step 1: We have been given, \[x{\text{ }} = {\text{ }}2{\text{ }}log{\text{ }}cot{\text{ }}t.\]
On differentiating the above equation with respect to t, we get
$ \dfrac{{dx}}{{dt}} = \dfrac{2}{{\cot t}}( - cose{c^2}t) $ \[ \ldots ..eq.\left( 1 \right)\]
Also, we have been given, \[y{\text{ }} = {\text{ }}tan{\text{ }}t{\text{ }} + {\text{ }}cot{\text{ }}t.\]
On differentiating the above equation with respect to t, we get
$ \dfrac{{dy}}{{dt}} = se{c^2}t - cose{c^2}t $ \[ \ldots ..eq.\left( 2 \right)\]
Step 2: Now, dividing \[eq.\left( 2 \right),\] by \[eq.\left( 1 \right)\], we get
$ \begin{gathered}
\dfrac{{dy}}{{dx}} = \dfrac{{se{c^2}t{\text{ }}-{\text{ }}cose{c^2}t}}{{ - 2cose{c^2}t}}(\cot t) \\
\dfrac{{dy}}{{dx}} = - \dfrac{{\cot t}}{2}({\tan ^2}t - 1) \\
\dfrac{{dy}}{{dx}} = - \dfrac{1}{2}(\tan t - \cot t) \\
\dfrac{{dy}}{{dx}} = - \dfrac{1}{2}(\dfrac{{\sin t}}{{\cos t}} - \dfrac{{\cos t}}{{\sin t}}) \\
\dfrac{{dy}}{{dx}} = - \dfrac{1}{2}(\dfrac{{{{\sin }^2}t - co{s^2}t}}{{\sin t\cos t}}) \\
\dfrac{{dy}}{{dx}} = \dfrac{{\cos 2t}}{{\sin 2t}} \\
\end{gathered} $
Step: On substituting the value, $ \dfrac{{dy}}{{dx}} = \dfrac{{\cos 2t}}{{\sin 2t}} $ in $ \dfrac{{dy}}{{dx}}\sin 2t + 1 $ , we get
$ \dfrac{{dy}}{{dx}}\sin 2t + 1 $ $ = $ $ \dfrac{{\cos 2t}}{{\sin 2t}}\sin 2t + 1 $
$ \begin{gathered}
= \cos 2t + 1 \\
= 2co{s^2}t \\
\end{gathered} $
So, the correct answer is “Option D”.
Note: Before solving this question, students should learn/remind all the basic required formulas of trigonometry. More importantly one must be thorough with all the differentiation formulae.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

