
If \[x{\text{ }} = {\text{ }}2{\text{ }}log{\text{ }}cot{\text{ }}t\] and \[y{\text{ }} = {\text{ }}tan{\text{ }}t{\text{ }} + {\text{ }}cot{\text{ }}t,\] $ \dfrac{{dy}}{{dx}}\sin 2t + 1 $ is equal to
\[\begin{array}{*{20}{l}}
{A){\text{ }}co{s^2}t} \\
{B){\text{ }}si{n^2}t} \\
{C){\text{ }}cos2t} \\
{D){\text{ }}2co{s^2}t}
\end{array}\]
Answer
507.9k+ views
Hint: In order to solve this question, we will start with differentiating the given equations with respect to t, then afterwards we will divide the two differential equations, now after substituting the values we will get the required answer.
Complete step-by-step answer:
Step 1: We have been given, \[x{\text{ }} = {\text{ }}2{\text{ }}log{\text{ }}cot{\text{ }}t.\]
On differentiating the above equation with respect to t, we get
$ \dfrac{{dx}}{{dt}} = \dfrac{2}{{\cot t}}( - cose{c^2}t) $ \[ \ldots ..eq.\left( 1 \right)\]
Also, we have been given, \[y{\text{ }} = {\text{ }}tan{\text{ }}t{\text{ }} + {\text{ }}cot{\text{ }}t.\]
On differentiating the above equation with respect to t, we get
$ \dfrac{{dy}}{{dt}} = se{c^2}t - cose{c^2}t $ \[ \ldots ..eq.\left( 2 \right)\]
Step 2: Now, dividing \[eq.\left( 2 \right),\] by \[eq.\left( 1 \right)\], we get
$ \begin{gathered}
\dfrac{{dy}}{{dx}} = \dfrac{{se{c^2}t{\text{ }}-{\text{ }}cose{c^2}t}}{{ - 2cose{c^2}t}}(\cot t) \\
\dfrac{{dy}}{{dx}} = - \dfrac{{\cot t}}{2}({\tan ^2}t - 1) \\
\dfrac{{dy}}{{dx}} = - \dfrac{1}{2}(\tan t - \cot t) \\
\dfrac{{dy}}{{dx}} = - \dfrac{1}{2}(\dfrac{{\sin t}}{{\cos t}} - \dfrac{{\cos t}}{{\sin t}}) \\
\dfrac{{dy}}{{dx}} = - \dfrac{1}{2}(\dfrac{{{{\sin }^2}t - co{s^2}t}}{{\sin t\cos t}}) \\
\dfrac{{dy}}{{dx}} = \dfrac{{\cos 2t}}{{\sin 2t}} \\
\end{gathered} $
Step: On substituting the value, $ \dfrac{{dy}}{{dx}} = \dfrac{{\cos 2t}}{{\sin 2t}} $ in $ \dfrac{{dy}}{{dx}}\sin 2t + 1 $ , we get
$ \dfrac{{dy}}{{dx}}\sin 2t + 1 $ $ = $ $ \dfrac{{\cos 2t}}{{\sin 2t}}\sin 2t + 1 $
$ \begin{gathered}
= \cos 2t + 1 \\
= 2co{s^2}t \\
\end{gathered} $
So, the correct answer is “Option D”.
Note: Before solving this question, students should learn/remind all the basic required formulas of trigonometry. More importantly one must be thorough with all the differentiation formulae.
Complete step-by-step answer:
Step 1: We have been given, \[x{\text{ }} = {\text{ }}2{\text{ }}log{\text{ }}cot{\text{ }}t.\]
On differentiating the above equation with respect to t, we get
$ \dfrac{{dx}}{{dt}} = \dfrac{2}{{\cot t}}( - cose{c^2}t) $ \[ \ldots ..eq.\left( 1 \right)\]
Also, we have been given, \[y{\text{ }} = {\text{ }}tan{\text{ }}t{\text{ }} + {\text{ }}cot{\text{ }}t.\]
On differentiating the above equation with respect to t, we get
$ \dfrac{{dy}}{{dt}} = se{c^2}t - cose{c^2}t $ \[ \ldots ..eq.\left( 2 \right)\]
Step 2: Now, dividing \[eq.\left( 2 \right),\] by \[eq.\left( 1 \right)\], we get
$ \begin{gathered}
\dfrac{{dy}}{{dx}} = \dfrac{{se{c^2}t{\text{ }}-{\text{ }}cose{c^2}t}}{{ - 2cose{c^2}t}}(\cot t) \\
\dfrac{{dy}}{{dx}} = - \dfrac{{\cot t}}{2}({\tan ^2}t - 1) \\
\dfrac{{dy}}{{dx}} = - \dfrac{1}{2}(\tan t - \cot t) \\
\dfrac{{dy}}{{dx}} = - \dfrac{1}{2}(\dfrac{{\sin t}}{{\cos t}} - \dfrac{{\cos t}}{{\sin t}}) \\
\dfrac{{dy}}{{dx}} = - \dfrac{1}{2}(\dfrac{{{{\sin }^2}t - co{s^2}t}}{{\sin t\cos t}}) \\
\dfrac{{dy}}{{dx}} = \dfrac{{\cos 2t}}{{\sin 2t}} \\
\end{gathered} $
Step: On substituting the value, $ \dfrac{{dy}}{{dx}} = \dfrac{{\cos 2t}}{{\sin 2t}} $ in $ \dfrac{{dy}}{{dx}}\sin 2t + 1 $ , we get
$ \dfrac{{dy}}{{dx}}\sin 2t + 1 $ $ = $ $ \dfrac{{\cos 2t}}{{\sin 2t}}\sin 2t + 1 $
$ \begin{gathered}
= \cos 2t + 1 \\
= 2co{s^2}t \\
\end{gathered} $
So, the correct answer is “Option D”.
Note: Before solving this question, students should learn/remind all the basic required formulas of trigonometry. More importantly one must be thorough with all the differentiation formulae.
Recently Updated Pages
Earth rotates from West to east ATrue BFalse class 6 social science CBSE

The easternmost longitude of India is A 97circ 25E class 6 social science CBSE

Write the given sentence in the passive voice Ann cant class 6 CBSE

Convert 1 foot into meters A030 meter B03048 meter-class-6-maths-CBSE

What is the LCM of 30 and 40 class 6 maths CBSE

What is history A The science that tries to understand class 6 social science CBSE

Trending doubts
Father of Indian ecology is a Prof R Misra b GS Puri class 12 biology CBSE

Who is considered as the Father of Ecology in India class 12 biology CBSE

Enzymes with heme as prosthetic group are a Catalase class 12 biology CBSE

A deep narrow valley with steep sides formed as a result class 12 biology CBSE

An example of ex situ conservation is a Sacred grove class 12 biology CBSE

Why is insulin not administered orally to a diabetic class 12 biology CBSE
