
If $x + y = 1,xy = 2$ then ${\tan ^{ - 1}}x + {\tan ^{ - 1}}y = $
A) $\dfrac{\pi }{4}$
B) $\dfrac{{3\pi }}{4}$
C) $\dfrac{{3\pi }}{2}$
D) $\dfrac{\pi }{2}$
Answer
517.2k+ views
Hint: Apply the inverse formula ${\tan ^{ - 1}}A + {\tan ^{ - 1}}B = n\pi + {\tan ^{ - 1}}\dfrac{{A + B}}{{1 - AB}}$, where n is a suitably chosen integer. After that substitute the values in the formula and simplify the term. Then replace the value in terms of tan. After that cancel out ${\tan ^{ - 1}}$ and $\tan $ to get the desired result.
Complete step-by-step answer:
The inverse trigonometric functions perform the opposite operation of the trigonometric functions such as sine, cosine, tangent, cosecant, secant, and cotangent. We know that trig functions are especially applicable to the right-angle triangle. These six important functions are used to find the angle measure in the right triangle when two sides of the triangle measures are known.
The convention symbol to represent the inverse trigonometric function using arc-prefix like arcsin(x), arccos(x), arctan(x), arccsc(x), arcsec(x), arccot(x).
We know that,
${\tan ^{ - 1}}A + {\tan ^{ - 1}}B = n\pi + {\tan ^{ - 1}}\dfrac{{A + B}}{{1 - AB}}$
Substitute $A = x$ and $B = y$ in the formula,
$ \Rightarrow {\tan ^{ - 1}}x + {\tan ^{ - 1}}y = n\pi + {\tan ^{ - 1}}\dfrac{{x + y}}{{1 - xy}}$
Substitute the values,
$ \Rightarrow {\tan ^{ - 1}}x + {\tan ^{ - 1}}y = n\pi + {\tan ^{ - 1}}\dfrac{1}{{1 - 2}}$
Subtract the terms in the denominator,
$ \Rightarrow {\tan ^{ - 1}}x + {\tan ^{ - 1}}y = n\pi + {\tan ^{ - 1}}\dfrac{1}{{ - 1}}$
Simplify the terms,
$ \Rightarrow {\tan ^{ - 1}}x + {\tan ^{ - 1}}y = n\pi + {\tan ^{ - 1}} - 1$
We know that,
${\tan ^{ - 1}}\left( { - x} \right) = - {\tan ^{ - 1}}x$
Use the identity in the above equation,
$ \Rightarrow {\tan ^{ - 1}}x + {\tan ^{ - 1}}y = n\pi - {\tan ^{ - 1}}1$
Substitute $\tan \dfrac{\pi }{4}$ in place of 1,
$ \Rightarrow {\tan ^{ - 1}}x + {\tan ^{ - 1}}y = n\pi - {\tan ^{ - 1}}\tan \dfrac{\pi }{4}$
Cancel out ${\tan ^{ - 1}}$ and $\tan $ we get,
$ \Rightarrow {\tan ^{ - 1}}x + {\tan ^{ - 1}}y = n\pi - \dfrac{\pi }{4}$
Since the option is in interval 1st and 2nd quadrant. So, substitute the value of n equal to 1,
$ \Rightarrow {\tan ^{ - 1}}x + {\tan ^{ - 1}}y = \pi - \dfrac{\pi }{4}$
Take LCM on the left side,
$ \Rightarrow {\tan ^{ - 1}}x + {\tan ^{ - 1}}y = \dfrac{{4\pi - \pi }}{4}$
Subtract the values in the numerator,
$ \Rightarrow {\tan ^{ - 1}}x + {\tan ^{ - 1}}y = \dfrac{{3\pi }}{4}$
Hence, option (B) is correct.
Note: Since \[\tan x\] is not a one-one function, its inverse is defined only within some intervals. The principal interval for \[ta{n^{ - 1}}x\] is $\left( { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right)$ . Whenever not explicitly mentioned, we take \[ta{n^{ - 1}}x\] in the principal interval. So, we have \[ta{n^{ - 1}}x \in \left( { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right)\] and \[ta{n^{ - 1}}y \in \left( { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right)\]. So,
\[ta{n^{ - 1}}x + ta{n^{ - 1}}x \in \left( { - \pi ,\pi } \right)\].
This is why we chose the value of n, so that $n\pi + {\tan ^{ - 1}}\dfrac{{x + y}}{{1 - xy}}$ is within the interval $\left( { - \pi ,\pi } \right)$. It can also be proved that unique n satisfies this property.
Complete step-by-step answer:
The inverse trigonometric functions perform the opposite operation of the trigonometric functions such as sine, cosine, tangent, cosecant, secant, and cotangent. We know that trig functions are especially applicable to the right-angle triangle. These six important functions are used to find the angle measure in the right triangle when two sides of the triangle measures are known.
The convention symbol to represent the inverse trigonometric function using arc-prefix like arcsin(x), arccos(x), arctan(x), arccsc(x), arcsec(x), arccot(x).
We know that,
${\tan ^{ - 1}}A + {\tan ^{ - 1}}B = n\pi + {\tan ^{ - 1}}\dfrac{{A + B}}{{1 - AB}}$
Substitute $A = x$ and $B = y$ in the formula,
$ \Rightarrow {\tan ^{ - 1}}x + {\tan ^{ - 1}}y = n\pi + {\tan ^{ - 1}}\dfrac{{x + y}}{{1 - xy}}$
Substitute the values,
$ \Rightarrow {\tan ^{ - 1}}x + {\tan ^{ - 1}}y = n\pi + {\tan ^{ - 1}}\dfrac{1}{{1 - 2}}$
Subtract the terms in the denominator,
$ \Rightarrow {\tan ^{ - 1}}x + {\tan ^{ - 1}}y = n\pi + {\tan ^{ - 1}}\dfrac{1}{{ - 1}}$
Simplify the terms,
$ \Rightarrow {\tan ^{ - 1}}x + {\tan ^{ - 1}}y = n\pi + {\tan ^{ - 1}} - 1$
We know that,
${\tan ^{ - 1}}\left( { - x} \right) = - {\tan ^{ - 1}}x$
Use the identity in the above equation,
$ \Rightarrow {\tan ^{ - 1}}x + {\tan ^{ - 1}}y = n\pi - {\tan ^{ - 1}}1$
Substitute $\tan \dfrac{\pi }{4}$ in place of 1,
$ \Rightarrow {\tan ^{ - 1}}x + {\tan ^{ - 1}}y = n\pi - {\tan ^{ - 1}}\tan \dfrac{\pi }{4}$
Cancel out ${\tan ^{ - 1}}$ and $\tan $ we get,
$ \Rightarrow {\tan ^{ - 1}}x + {\tan ^{ - 1}}y = n\pi - \dfrac{\pi }{4}$
Since the option is in interval 1st and 2nd quadrant. So, substitute the value of n equal to 1,
$ \Rightarrow {\tan ^{ - 1}}x + {\tan ^{ - 1}}y = \pi - \dfrac{\pi }{4}$
Take LCM on the left side,
$ \Rightarrow {\tan ^{ - 1}}x + {\tan ^{ - 1}}y = \dfrac{{4\pi - \pi }}{4}$
Subtract the values in the numerator,
$ \Rightarrow {\tan ^{ - 1}}x + {\tan ^{ - 1}}y = \dfrac{{3\pi }}{4}$
Hence, option (B) is correct.
Note: Since \[\tan x\] is not a one-one function, its inverse is defined only within some intervals. The principal interval for \[ta{n^{ - 1}}x\] is $\left( { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right)$ . Whenever not explicitly mentioned, we take \[ta{n^{ - 1}}x\] in the principal interval. So, we have \[ta{n^{ - 1}}x \in \left( { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right)\] and \[ta{n^{ - 1}}y \in \left( { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right)\]. So,
\[ta{n^{ - 1}}x + ta{n^{ - 1}}x \in \left( { - \pi ,\pi } \right)\].
This is why we chose the value of n, so that $n\pi + {\tan ^{ - 1}}\dfrac{{x + y}}{{1 - xy}}$ is within the interval $\left( { - \pi ,\pi } \right)$. It can also be proved that unique n satisfies this property.
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Who discovered the cell and how class 12 biology CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE
