
If $x+y+z={{180}^{\circ }}$, then $\cos 2x+\cos 2y-\cos 2z$ is equal to
A. $4\sin x\sin y\sin z$
B. $1-4\sin x\sin y\cos z$
C. $4\sin x\sin y\sin z-1$
D. $\cos x\cos y\cos z$
Answer
508.5k+ views
Hint: We first take the sum of angles for the trigonometric ratios. We also use the multiple angle formula of $\cos 2x=1-2{{\sin }^{2}}x$. We convert them to their multiple forms. We take $-2\sin x$ common and find the required solution.
Complete step by step answer:
It is given that $x+y+z=\pi $. We get $y+z=\pi -x$ and $x=\pi -\left( y+z \right)$.
We are going to use the formulas of sum of angles for the trigonometric ratios. We have $\cos A-\cos B=2\sin \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{B-A}{2} \right)$.
We use the representation of $A=2y;B=2z$ and get
$\begin{align}
& \cos 2y-\cos 2z \\
& =2\sin \left( \dfrac{2y+2z}{2} \right)\sin \left( \dfrac{2z-2y}{2} \right) \\
& =2\sin \left( y+z \right)\sin \left( z-y \right) \\
\end{align}$
We change the angle and get
$\begin{align}
& 2\sin \left( y+z \right)\sin \left( z-y \right) \\
& =2\sin \left( \pi -x \right)\sin \left( z-y \right) \\
& =2\sin x\sin \left( z-y \right) \\
\end{align}$
We also use the multiple angle formula of $\cos 2x=1-2{{\sin }^{2}}x$.
Therefore,
$\begin{align}
& \cos 2x+\cos 2y-\cos 2z \\
& =1-2{{\sin }^{2}}x+2\sin \left( y+z \right)\sin \left( z-y \right) \\
& =1-2{{\sin }^{2}}x+2\sin x\sin \left( z-y \right) \\
\end{align}$
We take $-2\sin x$ common and get
$\begin{align}
& \cos 2x+\cos 2y-\cos 2z \\
& =1-2\sin x\left[ \sin x-\sin \left( z-y \right) \right] \\
\end{align}$
We again change the $\sin x$ in the bracket. $\sin x=\sin \left[ \pi -\left( y+z \right) \right]=\sin \left( y+z \right)$.
$\begin{align}
& \cos 2x+\cos 2y-\cos 2z \\
& =1-2\sin x\left[ \sin \left( y+z \right)-\sin \left( z-y \right) \right] \\
\end{align}$
We now use $\sin A-\sin B=2\cos \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{A-B}{2} \right)$.
We use the representation of $A=y+z;B=z-y$ and get
$\begin{align}
& \sin \left( y+z \right)-\sin \left( z-y \right) \\
& =2\cos \left( \dfrac{y+z+z-y}{2} \right)\sin \left( \dfrac{y+z-z+y}{2} \right) \\
& =2\cos z\sin y \\
\end{align}$
Therefore,
$\begin{align}
& \cos 2x+\cos 2y-\cos 2z \\
& =1-2\sin x\left[ \sin \left( y+z \right)-\sin \left( z-y \right) \right] \\
& =1-4\sin x\sin y\cos z \\
\end{align}$
Therefore, the correct option is option (B).
Note:
Although for elementary knowledge the principal domain is enough to solve the problem. But if mentioned to find the general solution then the domain changes to $-\infty \le x\le \infty $. In that case we have to use the formula $x=n\pi \pm a$ for $\cos \left( x \right)=\cos a$ where $0\le a\le \pi $.
Complete step by step answer:
It is given that $x+y+z=\pi $. We get $y+z=\pi -x$ and $x=\pi -\left( y+z \right)$.
We are going to use the formulas of sum of angles for the trigonometric ratios. We have $\cos A-\cos B=2\sin \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{B-A}{2} \right)$.
We use the representation of $A=2y;B=2z$ and get
$\begin{align}
& \cos 2y-\cos 2z \\
& =2\sin \left( \dfrac{2y+2z}{2} \right)\sin \left( \dfrac{2z-2y}{2} \right) \\
& =2\sin \left( y+z \right)\sin \left( z-y \right) \\
\end{align}$
We change the angle and get
$\begin{align}
& 2\sin \left( y+z \right)\sin \left( z-y \right) \\
& =2\sin \left( \pi -x \right)\sin \left( z-y \right) \\
& =2\sin x\sin \left( z-y \right) \\
\end{align}$
We also use the multiple angle formula of $\cos 2x=1-2{{\sin }^{2}}x$.
Therefore,
$\begin{align}
& \cos 2x+\cos 2y-\cos 2z \\
& =1-2{{\sin }^{2}}x+2\sin \left( y+z \right)\sin \left( z-y \right) \\
& =1-2{{\sin }^{2}}x+2\sin x\sin \left( z-y \right) \\
\end{align}$
We take $-2\sin x$ common and get
$\begin{align}
& \cos 2x+\cos 2y-\cos 2z \\
& =1-2\sin x\left[ \sin x-\sin \left( z-y \right) \right] \\
\end{align}$
We again change the $\sin x$ in the bracket. $\sin x=\sin \left[ \pi -\left( y+z \right) \right]=\sin \left( y+z \right)$.
$\begin{align}
& \cos 2x+\cos 2y-\cos 2z \\
& =1-2\sin x\left[ \sin \left( y+z \right)-\sin \left( z-y \right) \right] \\
\end{align}$
We now use $\sin A-\sin B=2\cos \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{A-B}{2} \right)$.
We use the representation of $A=y+z;B=z-y$ and get
$\begin{align}
& \sin \left( y+z \right)-\sin \left( z-y \right) \\
& =2\cos \left( \dfrac{y+z+z-y}{2} \right)\sin \left( \dfrac{y+z-z+y}{2} \right) \\
& =2\cos z\sin y \\
\end{align}$
Therefore,
$\begin{align}
& \cos 2x+\cos 2y-\cos 2z \\
& =1-2\sin x\left[ \sin \left( y+z \right)-\sin \left( z-y \right) \right] \\
& =1-4\sin x\sin y\cos z \\
\end{align}$
Therefore, the correct option is option (B).
Note:
Although for elementary knowledge the principal domain is enough to solve the problem. But if mentioned to find the general solution then the domain changes to $-\infty \le x\le \infty $. In that case we have to use the formula $x=n\pi \pm a$ for $\cos \left( x \right)=\cos a$ where $0\le a\le \pi $.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

