
If we have $x={{e}^{t}}\sin t,y={{e}^{t}}\cos t$ are parametric equations, then $\dfrac{{{d}^{2}}y}{d{{x}^{2}}}$ at (1,1) is equal to:
(a) $-\dfrac{1}{2}$
(b) $-\dfrac{1}{4}$
(c) 0
(d) $\dfrac{1}{2}$
Answer
595.8k+ views
Hint: Get the values of $\dfrac{dy}{dx}$ and $\dfrac{dy}{dt}$ using the ‘u.v’ rule of derivative and use the relation $\dfrac{dy}{dx}=\dfrac{\dfrac{dy}{dt}}{\dfrac{dx}{dt}}$ . u.v for two functions in product is given as $\dfrac{d}{dx}u.v=u\dfrac{dv}{dx}+v\dfrac{du}{dx}$
$\dfrac{{{d}^{2}}y}{d{{x}^{2}}}$ can be calculated by the relation $\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{d}{dx}\left( \dfrac{dy}{dx} \right)=\dfrac{d}{dt}\left( \dfrac{dy}{dx} \right)\dfrac{dt}{dx}$ . Use the following identities to get the answer as $\dfrac{d}{dx}{{e}^{x}}={{e}^{x}},\dfrac{d}{dx}\cos x=-\sin x$ and $\dfrac{d}{dx}\sin x=\cos x$ .Use the trigonometric identity of $\tan \left( A-B \right)$ which is given as
$\tan \left( A-B \right)=\dfrac{\tan A-\tan B}{1+\tan A\tan B}$
Complete step-by-step solution -
We are given values of variables $x$ and $y$ in term of variable ‘t’ as
$\begin{align}
& x={{e}^{t}}\sin t.........\left( i \right) \\
& y={{e}^{t}}\cos t.........\left( ii \right) \\
\end{align}$
And hence, with the help of above equations, we need to calculate the value of \[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}\] at (1, 1). As we know $\dfrac{{{d}^{2}}y}{d{{x}^{2}}}$ is the derivative of $\dfrac{dy}{dx}$ i.e. $\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{d}{dx}\left( \dfrac{dy}{dx} \right)..............\left( iii \right)$
And we know the relation $\dfrac{dy}{dx}$ can be calculated by evaluating the terms $\dfrac{dy}{dt}$ and $\dfrac{dx}{dt}$ from the equation(i) and (ii) and use the following relation among them. So, we have
$\dfrac{dy}{dx}=\dfrac{\left( \dfrac{dy}{dt} \right)}{\left( \dfrac{dx}{dt} \right)}..........\left( iv \right)$
So let us calculate the values of \[\dfrac{dx}{dt}\] and $\dfrac{dy}{dt}$ , by differentiating the equation (i) and (ii).
So, value of $\dfrac{dy}{dt}$ can be calculated from equation(i) as
$\dfrac{dx}{dt}=\dfrac{d}{dt}\left( {{e}^{t}}\sin t \right).................\left( v \right)$
As ${{e}^{t}}$ and $\sin t$ are in product, so we need to apply the multiplication rule of differentiation which is given as
$\dfrac{d}{dx}\left( uv \right)=u\dfrac{dv}{dx}+v\dfrac{du}{dx}..........\left( vi \right)$
Hence, suppose $u={{e}^{t}}$ and $v=\sin t$ from the equation(v) and (vi).
So, we get value of \[\dfrac{dx}{dt}\] as
$\dfrac{dx}{dt}={{e}^{t}}\dfrac{d}{dt}\left( \sin t \right)+\sin t\dfrac{d}{dt}{{e}^{t}}$
We know
$\begin{align}
& \dfrac{d}{dx}{{e}^{x}}={{e}^{x}} \\
& \dfrac{d}{dx}\sin x=\cos x \\
\end{align}$
Hence, we get
$\begin{align}
& \dfrac{dx}{dt}={{e}^{t}}\cos t+\sin t\left( {{e}^{t}} \right) \\
& \dfrac{dx}{dt}={{e}^{t}}\cos t+{{e}^{t}}\sin t............\left( vii \right) \\
\end{align}$
Similarly, we can calculate $\dfrac{dy}{dt}$ by differentiating equation(ii) with respect to ‘t’. So, we get
$\dfrac{dy}{dt}=\dfrac{d}{dt}\left( {{e}^{t}}\cos t \right)$
Now, using the equation(vi), where taking u and v as ${{e}^{t}}$ and $\cos t$ .So, we get
\[\dfrac{d}{dt}\left( {{e}^{t}}\cos t \right)={{e}^{t}}\dfrac{d}{dt}\cos t+\cos t\dfrac{d}{dt}{{e}^{t}}\]
We know
$\dfrac{d}{dx}\cos x=-\sin x$ and $\dfrac{d}{dx}{{e}^{x}}={{e}^{x}}$
So, we get
$\begin{align}
& \dfrac{dy}{dt}={{e}^{t}}\left( -\sin t \right)+{{e}^{t}}\cos t \\
& \dfrac{dy}{dt}=-{{e}^{t}}\sin t+{{e}^{t}}\cos t..........\left( viii \right) \\
\end{align}$
Now, we can get values of $\dfrac{dy}{dx}$ from equation(iv), (vii) and (viii) as
$\begin{align}
& \dfrac{dy}{dx}=\dfrac{\dfrac{dy}{dt}}{\dfrac{dx}{dt}}=\dfrac{-{{e}^{t}}\sin t+{{e}^{t}}\cos t}{{{e}^{t}}\cos t+{{e}^{t}}\sin t} \\
& \dfrac{dy}{dx}=\dfrac{{{e}^{t}}\left[ -\sin t+\cos t \right]}{{{e}^{t}}\left[ \sin t+\cos t \right]} \\
& \dfrac{dy}{dx}=\dfrac{\cos t-\sin t}{\cos t+\sin t} \\
\end{align}$
Let us divide the numerator and denominator of the above equation by cost. So, we get
$\begin{align}
& \dfrac{dy}{dx}=\dfrac{\dfrac{\cos t-\sin t}{\cos t}}{\dfrac{\cos t+\sin t}{\cos t}} \\
& \dfrac{dy}{dx}=\dfrac{1-\dfrac{\sin t}{\cos t}}{1+\dfrac{\sin t}{\cos t}} \\
\end{align}$
We know $\dfrac{\sin \theta }{\cos \theta }=\tan \theta $ and $\tan \dfrac{\pi }{4}=1$ .So, we can rewrite the above equation as
$\dfrac{dy}{dx}=\dfrac{\tan \dfrac{\pi }{4}-\tan t}{1+\left( \tan \dfrac{\pi }{4} \right)\left( \tan t \right)}$
We know the trigonometric identity of $\tan \left( A-B \right)$ is given as
$\tan \left( A-B \right)=\dfrac{\tan A-\tan B}{1+\tan A\tan B}$
Hence, we can get value of $\dfrac{dy}{dx}$ by comparing with the above relation as
$\dfrac{dy}{dx}=\tan \left( \dfrac{\pi }{4}-t \right).........\left( ix \right)$
Now, from the equation(iii), we get
$\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{d}{dx}\left( \dfrac{dy}{dx} \right)$
Now, we can multiply and divide the RHS of the above equation by ‘dt’. So, we get
$\begin{align}
& \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{d}{dx}\left( \dfrac{dy}{dx} \right)\dfrac{dt}{dx} \\
& \Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{d}{dt}\left( \dfrac{dy}{dx} \right)\dfrac{dt}{dx}..........\left( \text{x} \right) \\
\end{align}$
Hence, we can get value of $\dfrac{dt}{dx}$ from the equation (vii) as
$\begin{align}
& \dfrac{dt}{dx}=\dfrac{1}{\left( \dfrac{dx}{dt} \right)} \\
& \dfrac{dt}{dx}=\dfrac{1}{{{e}^{t}}\left[ \sin t+\cos t \right]}.............\left( xi \right) \\
\end{align}$
And value of $\dfrac{d}{dt}\left( \dfrac{dy}{dx} \right)$ can be calculated using the equation (ix) as
$\dfrac{d}{dt}\left( \dfrac{dy}{dx} \right)=\dfrac{d}{dt}\left( \tan \left( \dfrac{\pi }{4}-t \right) \right)$
As we know
$\dfrac{d}{dx}\tan \theta ={{\sec }^{2}}\theta $
Hence, we get
$\begin{align}
& \dfrac{d}{dt}\left( \dfrac{dy}{dx} \right)={{\sec }^{2}}\left( \dfrac{\pi }{4}-t \right)\times \dfrac{d}{dt}\left( \dfrac{\pi }{4}-t \right) \\
& \dfrac{d}{dt}\left( \dfrac{dy}{dx} \right)=-1\times {{\sec }^{2}}\left( \dfrac{\pi }{4}-t \right) \\
& \dfrac{d}{dt}\left( \dfrac{dy}{dx} \right)=-{{\sec }^{2}}\left( \dfrac{\pi }{4}-t \right).........\left( xii \right) \\
\end{align}$
Now, we can get value of $\dfrac{{{d}^{2}}y}{d{{x}^{2}}}$ from the equations (x), (xi) and (xii) as
$\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=-{{\sec }^{2}}\left( \dfrac{\pi }{4}-t \right)\times \dfrac{1}{{{e}^{t}}\left[ \sin t+\cos t \right]}.........\left( xiii \right)$
Now, we need to find $\dfrac{{{d}^{2}}y}{d{{x}^{2}}}$ at (1, 1) i.e. at the values of $x=1$ and y = 1.
Now, we know the relation
$\begin{align}
& x={{e}^{t}}\sin t \\
& y={{e}^{t}}\cos t \\
\end{align}$
Divide both the equations, we get
$\dfrac{x}{y}=\dfrac{{{e}^{t}}\sin t}{{{e}^{t}}\cos t}=\dfrac{\sin t}{\cos t}$
Put $x=1$ and $y=1$ and replace $\dfrac{\sin t}{\cos t}$ by $\tan t$ using the equation
$\tan \theta =\dfrac{\sin \theta }{\cos \theta }$
So, we get
$\begin{align}
& 1=\tan t \\
& \Rightarrow \tan t=1 \\
\end{align}$
We know $\tan t$ will be equal to 1 at $t=\dfrac{\pi }{4}.$ So, we get value of $\dfrac{{{d}^{2}}y}{d{{x}^{2}}}$ as
$\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=-{{\sec }^{2}}\left( \dfrac{\pi }{4}-\dfrac{\pi }{4} \right)\times \dfrac{1}{{{e}^{\dfrac{\pi }{4}}}\left[ \sin \dfrac{\pi }{4}+\cos \dfrac{\pi }{4} \right]}$
As we know $\sin \dfrac{\pi }{4}=\cos \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}}$
So, we get
$\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=-{{\sec }^{2}}0\times \dfrac{1}{{{e}^{\dfrac{\pi }{4}}}\left[ \dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}} \right]}$
We know sec0 = 1. Hence, we get
$\begin{align}
& \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{-1}{{{e}^{\dfrac{\pi }{4}}}\left( \dfrac{2}{\sqrt{2}} \right)} \\
& \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{-\sqrt{2}}{2{{e}^{\dfrac{\pi }{4}}}}..............\left( xiv \right) \\
\end{align}$
Now, from the equation(i) we have
$x={{e}^{t}}\sin t$
As $x=1$ and $t=\dfrac{\pi }{4}$ will satisfy the above equation.
So, we get
$1={{e}^{\dfrac{\pi }{4}}}\sin \dfrac{\pi }{4}$
$\begin{align}
& 1={{e}^{\dfrac{\pi }{4}}}\dfrac{1}{\sqrt{2}} \\
& {{e}^{\dfrac{\pi }{4}}}=\sqrt{2} \\
\end{align}$
Now, we can replace ${{e}^{\dfrac{\pi }{4}}}$ by $\sqrt{2}$ in the equation (xiv) and hence, we get
$\dfrac{{{d}^{2}}y}{d{{x}^{2}}}$ at (1, 1) = $\dfrac{-2}{2\sqrt{2}}=\dfrac{-1}{2}$
$\dfrac{{{d}^{2}}y}{d{{x}^{2}}}$ at (1, 1) = $\dfrac{-1}{2}$
So, option(a) is the correct answer.
Note: Another approach for calculating $\dfrac{{{d}^{2}}y}{d{{x}^{2}}}$ would be given as
$\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{d}{dx}\left( \dfrac{dy}{dx} \right)$
Directly substitute $\dfrac{dy}{dx}=\tan \left( \dfrac{\pi }{4}-t \right)$ to the above expression, we get $\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{d}{dx}\left( \tan \left( \dfrac{\pi }{4}-t \right) \right)$
Use chain rule of differentiation, we get
$\begin{align}
& \dfrac{{{d}^{2}}y}{d{{x}^{2}}}={{\sec }^{2}}\left( \dfrac{\pi }{4}-t \right)\dfrac{d}{dx}\left( \dfrac{\pi }{4}-t \right) \\
& \dfrac{{{d}^{2}}y}{d{{x}^{2}}}={{\sec }^{2}}\left( \dfrac{\pi }{4}-t \right)\left( -\dfrac{dt}{dx} \right) \\
\end{align}$
Now, put value of $\dfrac{dt}{dx}$ to get $\dfrac{{{d}^{2}}y}{d{{x}^{2}}}$
One may go wrong, if he/she first put $x=1$ and $y=1$ to the given expression and get $t=\dfrac{\pi }{4},$ so, he/she will get expression as $x=\dfrac{{{e}^{\dfrac{\pi }{4}}}}{\sqrt{2}}$ and $y=\dfrac{{{e}^{\dfrac{\pi }{4}}}}{\sqrt{2}}$ , and hence differentiation of them is 0, and cannot be able to get $\dfrac{{{d}^{2}}y}{d{{x}^{2}}}$ , which is the blunder mistake can be possible by the students. So, take care and be careful with the questions related to them.
$\dfrac{{{d}^{2}}y}{d{{x}^{2}}}$ can be calculated by the relation $\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{d}{dx}\left( \dfrac{dy}{dx} \right)=\dfrac{d}{dt}\left( \dfrac{dy}{dx} \right)\dfrac{dt}{dx}$ . Use the following identities to get the answer as $\dfrac{d}{dx}{{e}^{x}}={{e}^{x}},\dfrac{d}{dx}\cos x=-\sin x$ and $\dfrac{d}{dx}\sin x=\cos x$ .Use the trigonometric identity of $\tan \left( A-B \right)$ which is given as
$\tan \left( A-B \right)=\dfrac{\tan A-\tan B}{1+\tan A\tan B}$
Complete step-by-step solution -
We are given values of variables $x$ and $y$ in term of variable ‘t’ as
$\begin{align}
& x={{e}^{t}}\sin t.........\left( i \right) \\
& y={{e}^{t}}\cos t.........\left( ii \right) \\
\end{align}$
And hence, with the help of above equations, we need to calculate the value of \[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}\] at (1, 1). As we know $\dfrac{{{d}^{2}}y}{d{{x}^{2}}}$ is the derivative of $\dfrac{dy}{dx}$ i.e. $\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{d}{dx}\left( \dfrac{dy}{dx} \right)..............\left( iii \right)$
And we know the relation $\dfrac{dy}{dx}$ can be calculated by evaluating the terms $\dfrac{dy}{dt}$ and $\dfrac{dx}{dt}$ from the equation(i) and (ii) and use the following relation among them. So, we have
$\dfrac{dy}{dx}=\dfrac{\left( \dfrac{dy}{dt} \right)}{\left( \dfrac{dx}{dt} \right)}..........\left( iv \right)$
So let us calculate the values of \[\dfrac{dx}{dt}\] and $\dfrac{dy}{dt}$ , by differentiating the equation (i) and (ii).
So, value of $\dfrac{dy}{dt}$ can be calculated from equation(i) as
$\dfrac{dx}{dt}=\dfrac{d}{dt}\left( {{e}^{t}}\sin t \right).................\left( v \right)$
As ${{e}^{t}}$ and $\sin t$ are in product, so we need to apply the multiplication rule of differentiation which is given as
$\dfrac{d}{dx}\left( uv \right)=u\dfrac{dv}{dx}+v\dfrac{du}{dx}..........\left( vi \right)$
Hence, suppose $u={{e}^{t}}$ and $v=\sin t$ from the equation(v) and (vi).
So, we get value of \[\dfrac{dx}{dt}\] as
$\dfrac{dx}{dt}={{e}^{t}}\dfrac{d}{dt}\left( \sin t \right)+\sin t\dfrac{d}{dt}{{e}^{t}}$
We know
$\begin{align}
& \dfrac{d}{dx}{{e}^{x}}={{e}^{x}} \\
& \dfrac{d}{dx}\sin x=\cos x \\
\end{align}$
Hence, we get
$\begin{align}
& \dfrac{dx}{dt}={{e}^{t}}\cos t+\sin t\left( {{e}^{t}} \right) \\
& \dfrac{dx}{dt}={{e}^{t}}\cos t+{{e}^{t}}\sin t............\left( vii \right) \\
\end{align}$
Similarly, we can calculate $\dfrac{dy}{dt}$ by differentiating equation(ii) with respect to ‘t’. So, we get
$\dfrac{dy}{dt}=\dfrac{d}{dt}\left( {{e}^{t}}\cos t \right)$
Now, using the equation(vi), where taking u and v as ${{e}^{t}}$ and $\cos t$ .So, we get
\[\dfrac{d}{dt}\left( {{e}^{t}}\cos t \right)={{e}^{t}}\dfrac{d}{dt}\cos t+\cos t\dfrac{d}{dt}{{e}^{t}}\]
We know
$\dfrac{d}{dx}\cos x=-\sin x$ and $\dfrac{d}{dx}{{e}^{x}}={{e}^{x}}$
So, we get
$\begin{align}
& \dfrac{dy}{dt}={{e}^{t}}\left( -\sin t \right)+{{e}^{t}}\cos t \\
& \dfrac{dy}{dt}=-{{e}^{t}}\sin t+{{e}^{t}}\cos t..........\left( viii \right) \\
\end{align}$
Now, we can get values of $\dfrac{dy}{dx}$ from equation(iv), (vii) and (viii) as
$\begin{align}
& \dfrac{dy}{dx}=\dfrac{\dfrac{dy}{dt}}{\dfrac{dx}{dt}}=\dfrac{-{{e}^{t}}\sin t+{{e}^{t}}\cos t}{{{e}^{t}}\cos t+{{e}^{t}}\sin t} \\
& \dfrac{dy}{dx}=\dfrac{{{e}^{t}}\left[ -\sin t+\cos t \right]}{{{e}^{t}}\left[ \sin t+\cos t \right]} \\
& \dfrac{dy}{dx}=\dfrac{\cos t-\sin t}{\cos t+\sin t} \\
\end{align}$
Let us divide the numerator and denominator of the above equation by cost. So, we get
$\begin{align}
& \dfrac{dy}{dx}=\dfrac{\dfrac{\cos t-\sin t}{\cos t}}{\dfrac{\cos t+\sin t}{\cos t}} \\
& \dfrac{dy}{dx}=\dfrac{1-\dfrac{\sin t}{\cos t}}{1+\dfrac{\sin t}{\cos t}} \\
\end{align}$
We know $\dfrac{\sin \theta }{\cos \theta }=\tan \theta $ and $\tan \dfrac{\pi }{4}=1$ .So, we can rewrite the above equation as
$\dfrac{dy}{dx}=\dfrac{\tan \dfrac{\pi }{4}-\tan t}{1+\left( \tan \dfrac{\pi }{4} \right)\left( \tan t \right)}$
We know the trigonometric identity of $\tan \left( A-B \right)$ is given as
$\tan \left( A-B \right)=\dfrac{\tan A-\tan B}{1+\tan A\tan B}$
Hence, we can get value of $\dfrac{dy}{dx}$ by comparing with the above relation as
$\dfrac{dy}{dx}=\tan \left( \dfrac{\pi }{4}-t \right).........\left( ix \right)$
Now, from the equation(iii), we get
$\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{d}{dx}\left( \dfrac{dy}{dx} \right)$
Now, we can multiply and divide the RHS of the above equation by ‘dt’. So, we get
$\begin{align}
& \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{d}{dx}\left( \dfrac{dy}{dx} \right)\dfrac{dt}{dx} \\
& \Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{d}{dt}\left( \dfrac{dy}{dx} \right)\dfrac{dt}{dx}..........\left( \text{x} \right) \\
\end{align}$
Hence, we can get value of $\dfrac{dt}{dx}$ from the equation (vii) as
$\begin{align}
& \dfrac{dt}{dx}=\dfrac{1}{\left( \dfrac{dx}{dt} \right)} \\
& \dfrac{dt}{dx}=\dfrac{1}{{{e}^{t}}\left[ \sin t+\cos t \right]}.............\left( xi \right) \\
\end{align}$
And value of $\dfrac{d}{dt}\left( \dfrac{dy}{dx} \right)$ can be calculated using the equation (ix) as
$\dfrac{d}{dt}\left( \dfrac{dy}{dx} \right)=\dfrac{d}{dt}\left( \tan \left( \dfrac{\pi }{4}-t \right) \right)$
As we know
$\dfrac{d}{dx}\tan \theta ={{\sec }^{2}}\theta $
Hence, we get
$\begin{align}
& \dfrac{d}{dt}\left( \dfrac{dy}{dx} \right)={{\sec }^{2}}\left( \dfrac{\pi }{4}-t \right)\times \dfrac{d}{dt}\left( \dfrac{\pi }{4}-t \right) \\
& \dfrac{d}{dt}\left( \dfrac{dy}{dx} \right)=-1\times {{\sec }^{2}}\left( \dfrac{\pi }{4}-t \right) \\
& \dfrac{d}{dt}\left( \dfrac{dy}{dx} \right)=-{{\sec }^{2}}\left( \dfrac{\pi }{4}-t \right).........\left( xii \right) \\
\end{align}$
Now, we can get value of $\dfrac{{{d}^{2}}y}{d{{x}^{2}}}$ from the equations (x), (xi) and (xii) as
$\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=-{{\sec }^{2}}\left( \dfrac{\pi }{4}-t \right)\times \dfrac{1}{{{e}^{t}}\left[ \sin t+\cos t \right]}.........\left( xiii \right)$
Now, we need to find $\dfrac{{{d}^{2}}y}{d{{x}^{2}}}$ at (1, 1) i.e. at the values of $x=1$ and y = 1.
Now, we know the relation
$\begin{align}
& x={{e}^{t}}\sin t \\
& y={{e}^{t}}\cos t \\
\end{align}$
Divide both the equations, we get
$\dfrac{x}{y}=\dfrac{{{e}^{t}}\sin t}{{{e}^{t}}\cos t}=\dfrac{\sin t}{\cos t}$
Put $x=1$ and $y=1$ and replace $\dfrac{\sin t}{\cos t}$ by $\tan t$ using the equation
$\tan \theta =\dfrac{\sin \theta }{\cos \theta }$
So, we get
$\begin{align}
& 1=\tan t \\
& \Rightarrow \tan t=1 \\
\end{align}$
We know $\tan t$ will be equal to 1 at $t=\dfrac{\pi }{4}.$ So, we get value of $\dfrac{{{d}^{2}}y}{d{{x}^{2}}}$ as
$\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=-{{\sec }^{2}}\left( \dfrac{\pi }{4}-\dfrac{\pi }{4} \right)\times \dfrac{1}{{{e}^{\dfrac{\pi }{4}}}\left[ \sin \dfrac{\pi }{4}+\cos \dfrac{\pi }{4} \right]}$
As we know $\sin \dfrac{\pi }{4}=\cos \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}}$
So, we get
$\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=-{{\sec }^{2}}0\times \dfrac{1}{{{e}^{\dfrac{\pi }{4}}}\left[ \dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}} \right]}$
We know sec0 = 1. Hence, we get
$\begin{align}
& \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{-1}{{{e}^{\dfrac{\pi }{4}}}\left( \dfrac{2}{\sqrt{2}} \right)} \\
& \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{-\sqrt{2}}{2{{e}^{\dfrac{\pi }{4}}}}..............\left( xiv \right) \\
\end{align}$
Now, from the equation(i) we have
$x={{e}^{t}}\sin t$
As $x=1$ and $t=\dfrac{\pi }{4}$ will satisfy the above equation.
So, we get
$1={{e}^{\dfrac{\pi }{4}}}\sin \dfrac{\pi }{4}$
$\begin{align}
& 1={{e}^{\dfrac{\pi }{4}}}\dfrac{1}{\sqrt{2}} \\
& {{e}^{\dfrac{\pi }{4}}}=\sqrt{2} \\
\end{align}$
Now, we can replace ${{e}^{\dfrac{\pi }{4}}}$ by $\sqrt{2}$ in the equation (xiv) and hence, we get
$\dfrac{{{d}^{2}}y}{d{{x}^{2}}}$ at (1, 1) = $\dfrac{-2}{2\sqrt{2}}=\dfrac{-1}{2}$
$\dfrac{{{d}^{2}}y}{d{{x}^{2}}}$ at (1, 1) = $\dfrac{-1}{2}$
So, option(a) is the correct answer.
Note: Another approach for calculating $\dfrac{{{d}^{2}}y}{d{{x}^{2}}}$ would be given as
$\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{d}{dx}\left( \dfrac{dy}{dx} \right)$
Directly substitute $\dfrac{dy}{dx}=\tan \left( \dfrac{\pi }{4}-t \right)$ to the above expression, we get $\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{d}{dx}\left( \tan \left( \dfrac{\pi }{4}-t \right) \right)$
Use chain rule of differentiation, we get
$\begin{align}
& \dfrac{{{d}^{2}}y}{d{{x}^{2}}}={{\sec }^{2}}\left( \dfrac{\pi }{4}-t \right)\dfrac{d}{dx}\left( \dfrac{\pi }{4}-t \right) \\
& \dfrac{{{d}^{2}}y}{d{{x}^{2}}}={{\sec }^{2}}\left( \dfrac{\pi }{4}-t \right)\left( -\dfrac{dt}{dx} \right) \\
\end{align}$
Now, put value of $\dfrac{dt}{dx}$ to get $\dfrac{{{d}^{2}}y}{d{{x}^{2}}}$
One may go wrong, if he/she first put $x=1$ and $y=1$ to the given expression and get $t=\dfrac{\pi }{4},$ so, he/she will get expression as $x=\dfrac{{{e}^{\dfrac{\pi }{4}}}}{\sqrt{2}}$ and $y=\dfrac{{{e}^{\dfrac{\pi }{4}}}}{\sqrt{2}}$ , and hence differentiation of them is 0, and cannot be able to get $\dfrac{{{d}^{2}}y}{d{{x}^{2}}}$ , which is the blunder mistake can be possible by the students. So, take care and be careful with the questions related to them.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

