
If we have $x = {e^{i\theta }}$ and $y = {e^{i\phi }}$ then prove that ${x^m}{y^n} + \dfrac{1}{{{x^m}{y^n}}} = 2\cos \left( {m\theta + n\phi } \right)$.
Answer
581.7k+ views
Hint – In this particular type of question use the concept that in complex system ${e^{ix}} = \cos x + i\sin x$ and ${e^{ - ix}} = \cos \left( { - x} \right) + i\sin \left( { - x} \right)$, use the concept that cos (A + B) = cos A cos B – sin A sin B so use these properties to reach the solution of the question.
Complete step-by-step solution -
Proof –
As we all know in complex system,
${e^{ix}} = \cos x + i\sin x$ and ${e^{ - ix}} = \cos \left( { - x} \right) + i\sin \left( { - x} \right)$
Now it is given that, $x = {e^{i\theta }}$
Now take the ${m^{th}}$ power in the both sides we have,
Therefore, ${x^m} = {\left( {{e^{i\theta }}} \right)^m} = {e^{im\theta }}$............. (1)
Therefore, ${x^m} = \cos \left( {m\theta } \right) + i\sin \left( {m\theta } \right)$.................(2)
And it is also given that, $y = {e^{i\phi }}$
Now take the ${n^{th}}$ power in the both sides we have,
Therefore, ${y^n} = {\left( {{e^{i\phi }}} \right)^n} = {e^{in\phi }}$............... (3)
Therefore, ${y^n} = \cos \left( {n\phi } \right) + i\sin \left( {n\phi } \right)$................... (4)
Now take the L.H.S of the given equation we have,
$ \Rightarrow {x^m}{y^n} + \dfrac{1}{{{x^m}{y^n}}}$
This equation is also written as,
$ \Rightarrow {x^m}{y^n} + {x^{ - m}}{y^{ - n}}$....................... (5)
Now from equation (1) we have,
${x^m} = {\left( {{e^{i\theta }}} \right)^m} = {e^{im\theta }}$
Therefore, ${x^{ - m}} = {\left( {{e^{i\theta }}} \right)^{ - m}} = {e^{ - im\theta }}$
${x^{ - m}} = \cos \left( { - m\theta } \right) + i\sin \left( { - m\theta } \right)$
Now as we know that cos (-x) = cos x and sin (-x) = -sin x so use this property in the above equation we have,
${x^{ - m}} = \cos \left( {m\theta } \right) - i\sin \left( {m\theta } \right)$............... (6)
Similarly from equation (3) we have,
${y^{ - n}} = \cos \left( {n\phi } \right) - i\sin \left( {n\phi } \right)$.................. (7)
Now substitute the value from equation (2), (4), (6) and (7) in equation (5) we have,
\[ \Rightarrow {x^m}{y^n} + {x^{ - m}}{y^{ - n}} = \left( {\cos \left( {m\theta } \right) + i\sin \left( {m\theta } \right)} \right)\left( {\cos \left( {n\phi } \right) + i\sin \left( {n\phi } \right)} \right) + \left( {\cos \left( {m\theta } \right) - i\sin \left( {m\theta } \right)} \right)\left( {\cos \left( {n\phi } \right) - i\sin \left( {n\phi } \right)} \right)\]Now simplify this we have,
\[
\Rightarrow {x^m}{y^n} + {x^{ - m}}{y^{ - n}} = \left( {\cos m\theta \cos n\phi + {i^2}\sin m\theta \sin n\phi + i\left( {\cos m\theta \sin n\phi + \sin m\theta \cos n\phi } \right)} \right) + \\
\left( {\cos m\theta \cos n\phi + {i^2}\sin m\theta \sin n\phi - i\left( {\cos m\theta \sin n\phi + \sin m\theta \cos n\phi } \right)} \right) \\
\]
\[ \Rightarrow {x^m}{y^n} + {x^{ - m}}{y^{ - n}} = 2\left( {\cos m\theta \cos n\phi + {i^2}\sin m\theta \sin n\phi } \right)\]
Now as we know in complex, $i = \sqrt { - 1} \Rightarrow {i^2} = - 1$ so use this in the above equation we have,
\[ \Rightarrow {x^m}{y^n} + {x^{ - m}}{y^{ - n}} = 2\left( {\cos m\theta \cos n\phi - \sin m\theta \sin n\phi } \right)\]
Now as we know that cos (A + B) = cos A cos B – sin A sin B so use this in the above equation we have,
\[ \Rightarrow {x^m}{y^n} + {x^{ - m}}{y^{ - n}} = 2\cos \left( {m\theta + n\phi } \right)\]
= R.H.S
Hence Proved.
Note – Whenever we face such types of questions the key concept we have to remember is that always recall the properties which are stated above then first consider the L.H.S of the given equation and simplify using these properties as above we will get the required result i.e. equal to R.H.S.
Complete step-by-step solution -
Proof –
As we all know in complex system,
${e^{ix}} = \cos x + i\sin x$ and ${e^{ - ix}} = \cos \left( { - x} \right) + i\sin \left( { - x} \right)$
Now it is given that, $x = {e^{i\theta }}$
Now take the ${m^{th}}$ power in the both sides we have,
Therefore, ${x^m} = {\left( {{e^{i\theta }}} \right)^m} = {e^{im\theta }}$............. (1)
Therefore, ${x^m} = \cos \left( {m\theta } \right) + i\sin \left( {m\theta } \right)$.................(2)
And it is also given that, $y = {e^{i\phi }}$
Now take the ${n^{th}}$ power in the both sides we have,
Therefore, ${y^n} = {\left( {{e^{i\phi }}} \right)^n} = {e^{in\phi }}$............... (3)
Therefore, ${y^n} = \cos \left( {n\phi } \right) + i\sin \left( {n\phi } \right)$................... (4)
Now take the L.H.S of the given equation we have,
$ \Rightarrow {x^m}{y^n} + \dfrac{1}{{{x^m}{y^n}}}$
This equation is also written as,
$ \Rightarrow {x^m}{y^n} + {x^{ - m}}{y^{ - n}}$....................... (5)
Now from equation (1) we have,
${x^m} = {\left( {{e^{i\theta }}} \right)^m} = {e^{im\theta }}$
Therefore, ${x^{ - m}} = {\left( {{e^{i\theta }}} \right)^{ - m}} = {e^{ - im\theta }}$
${x^{ - m}} = \cos \left( { - m\theta } \right) + i\sin \left( { - m\theta } \right)$
Now as we know that cos (-x) = cos x and sin (-x) = -sin x so use this property in the above equation we have,
${x^{ - m}} = \cos \left( {m\theta } \right) - i\sin \left( {m\theta } \right)$............... (6)
Similarly from equation (3) we have,
${y^{ - n}} = \cos \left( {n\phi } \right) - i\sin \left( {n\phi } \right)$.................. (7)
Now substitute the value from equation (2), (4), (6) and (7) in equation (5) we have,
\[ \Rightarrow {x^m}{y^n} + {x^{ - m}}{y^{ - n}} = \left( {\cos \left( {m\theta } \right) + i\sin \left( {m\theta } \right)} \right)\left( {\cos \left( {n\phi } \right) + i\sin \left( {n\phi } \right)} \right) + \left( {\cos \left( {m\theta } \right) - i\sin \left( {m\theta } \right)} \right)\left( {\cos \left( {n\phi } \right) - i\sin \left( {n\phi } \right)} \right)\]Now simplify this we have,
\[
\Rightarrow {x^m}{y^n} + {x^{ - m}}{y^{ - n}} = \left( {\cos m\theta \cos n\phi + {i^2}\sin m\theta \sin n\phi + i\left( {\cos m\theta \sin n\phi + \sin m\theta \cos n\phi } \right)} \right) + \\
\left( {\cos m\theta \cos n\phi + {i^2}\sin m\theta \sin n\phi - i\left( {\cos m\theta \sin n\phi + \sin m\theta \cos n\phi } \right)} \right) \\
\]
\[ \Rightarrow {x^m}{y^n} + {x^{ - m}}{y^{ - n}} = 2\left( {\cos m\theta \cos n\phi + {i^2}\sin m\theta \sin n\phi } \right)\]
Now as we know in complex, $i = \sqrt { - 1} \Rightarrow {i^2} = - 1$ so use this in the above equation we have,
\[ \Rightarrow {x^m}{y^n} + {x^{ - m}}{y^{ - n}} = 2\left( {\cos m\theta \cos n\phi - \sin m\theta \sin n\phi } \right)\]
Now as we know that cos (A + B) = cos A cos B – sin A sin B so use this in the above equation we have,
\[ \Rightarrow {x^m}{y^n} + {x^{ - m}}{y^{ - n}} = 2\cos \left( {m\theta + n\phi } \right)\]
= R.H.S
Hence Proved.
Note – Whenever we face such types of questions the key concept we have to remember is that always recall the properties which are stated above then first consider the L.H.S of the given equation and simplify using these properties as above we will get the required result i.e. equal to R.H.S.
Recently Updated Pages
Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 7 Maths: Engaging Questions & Answers for Success

Class 7 Question and Answer - Your Ultimate Solutions Guide

Master Class 6 Maths: Engaging Questions & Answers for Success

Class 6 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

