
If we have the value of x as $0 < x < \pi $, and $\cos x + \sin x = \dfrac{1}{2}$, then find the value of $\tan x$?
A). $\dfrac{{\left( { - 4 \pm \sqrt 7 } \right)}}{3}$
B). $\dfrac{{\left( {1 + \sqrt 7 } \right)}}{4}$
C). $\dfrac{{\left( {1 - \sqrt 7 } \right)}}{4}$
$\dfrac{{\left( { - 1 \pm \sqrt 7 } \right)}}{4}$
Answer
498.3k+ views
Hint: : In the given problem we need to find value of $\tan x$ so we will try to convert $\cos x + \sin x = \dfrac{1}{2}$ in terms of tangent using trigonometric identities. We will use the substitution method to solve the given question and from that, we will obtain a quadratic equation and from that, we will find the value of $\tan x$.
Formulae used:
$\cos 2x = \dfrac{{1 - {{\tan }^2}x}}{{1 + {{\tan }^2}x}}$
$\sin 2x = \dfrac{{2\tan x}}{{1 + {{\tan }^2}x}}$
$\tan 2x = \dfrac{{2\tan x}}{{1 - {{\tan }^2}x}}$
The above written identities are trigonometric ratios of angle $2x$, so will convert them to angle $x$.
Complete step-by-step solution:
Given, $\cos x + \sin x = \dfrac{1}{2}$
Since, we know that $\cos 2x = \dfrac{{1 - {{\tan }^2}x}}{{1 + {{\tan }^2}x}}$, therefore $\cos x = \dfrac{{1 - {{\tan }^2}\dfrac{x}{2}}}{{1 + {{\tan }^2}\dfrac{x}{2}}}$
And, $\sin 2x = \dfrac{{2\tan x}}{{1 + {{\tan }^2}x}}$, therefore $\sin x = \dfrac{{2\tan \dfrac{x}{2}}}{{1 + {{\tan }^2}\dfrac{x}{2}}}$
Let us substitute the value of $\cos x$ and $\sin x$ in $\cos x + \sin x = \dfrac{1}{2}$
$\therefore \dfrac{{1 - {{\tan }^2}\dfrac{x}{2}}}{{1 + {{\tan }^2}\dfrac{x}{2}}} + \dfrac{{2\tan \dfrac{x}{2}}}{{1 + {{\tan }^2}\dfrac{x}{2}}} = \dfrac{1}{2}$
Let $\tan \dfrac{x}{2} = t$
$ \Rightarrow \dfrac{{1 - {t^2}}}{{1 + {t^2}}} + \dfrac{{2t}}{{1 + {t^2}}} = \dfrac{1}{2}$
Take L.C.M
\[ \Rightarrow \dfrac{{1 - {t^2} + 2t}}{{1 + {t^2}}} = \dfrac{1}{2}\]
On cross-multiplication, we get
\[ \Rightarrow 2\left( {1 - {t^2} + 2t} \right) = 1 + {t^2}\]
$ \Rightarrow 2 - 2{t^2} + 4t = 1 + {t^2}$
Shift all terms on one side
$ \Rightarrow 2{t^2} + {t^2} - 4t - 2 + 1 = 0$
$ \Rightarrow 3{t^2} - 4t - 1 = 0$
The above written equation does not exists real factors, hence we will solve it by quadratic formula $x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$ substituting the values in this equation, we get
$ \Rightarrow t = \dfrac{{ - \left( { - 4} \right) \pm \sqrt {{{\left( { - 4} \right)}^2} - 4 \times 3 \times - 1} }}{{2 \times 3}} = \dfrac{{4 \pm \sqrt {16 + 12} }}{{2 \times 3}} = \dfrac{{4 \pm \sqrt {28} }}{{2 \times 3}}$
$ \Rightarrow t = \dfrac{{4 \pm \sqrt {2 \times 2 \times 7} }}{{2 \times 3}} = \dfrac{{2\left( {2 \pm \sqrt 7 } \right)}}{{2 \times 3}}$
\[ \Rightarrow t = \dfrac{{2 \pm \sqrt 7 }}{3}\]
As $0 < x < \pi $
$ \Rightarrow 0 < \dfrac{x}{2} < \dfrac{\pi }{2}$
So, $\tan \dfrac{x}{2}$ is positive. (In first quadrant tangent is positive)
$\therefore t = \tan \dfrac{x}{2} = \dfrac{{2 + \sqrt 7 }}{3}$
Since, we know that $\tan 2x = \dfrac{{2\tan x}}{{1 - {{\tan }^2}x}}$ therefore, $\tan x = \dfrac{{2\tan \dfrac{x}{2}}}{{1 - {{\tan }^2}\dfrac{x}{2}}}$
Now, $\tan x = \dfrac{{2\tan \dfrac{x}{2}}}{{1 - {{\tan }^2}\dfrac{x}{2}}} = \dfrac{{2t}}{{1 - {t^2}}}$
Let us substitute the value of $t$
$ \Rightarrow \tan x = \dfrac{{2\left( {\dfrac{{2 + \sqrt 7 }}{3}} \right)}}{{1 - {{\left( {\dfrac{{2 + \sqrt 7 }}{3}} \right)}^2}}} = \dfrac{{\dfrac{{4 + 2\sqrt 7 }}{3}}}{{1 - {{\dfrac{{\left( {2 + \sqrt 7 } \right)}}{{{3^2}}}}^2}}} = \dfrac{{\dfrac{{4 + 2\sqrt 7 }}{3}}}{{{{\dfrac{{{3^2} - \left( {2 + \sqrt 7 } \right)}}{{{3^2}}}}^2}}}$
It can also be written as,
$ \Rightarrow \tan x = \dfrac{{4 + 2\sqrt 7 }}{3} \times \dfrac{{{3^2}}}{{{3^2} - {{\left( {2 + \sqrt 7 } \right)}^2}}}$
After cancelling out $3$ and expansion of ${\left( {2 + \sqrt 7 } \right)^2}$, we get
$ \Rightarrow \tan x = \dfrac{{3\left( {4 + 2\sqrt 7 } \right)}}{{{3^2} - \left( {4 + 7 + 4\sqrt 7 } \right)}} = \dfrac{{3\left( {4 + 2\sqrt 7 } \right)}}{{9 - \left( {11 + 4\sqrt 7 } \right)}} = \dfrac{{3\left( {4 + 2\sqrt 7 } \right)}}{{9 - 11 - 4\sqrt 7 }}$
\[ \Rightarrow \tan x = \dfrac{{3\left( {4 + 2\sqrt 7 } \right)}}{{ - 2 - 4\sqrt 7 }} = \dfrac{{3\left( {4 + 2\sqrt 7 } \right)}}{{ - \left( {2 + 4\sqrt 7 } \right)}}\]
It can also be written as,
\[ \Rightarrow \tan x = - \dfrac{{3\left( {4 + 2\sqrt 7 } \right)}}{{2 + 4\sqrt 7 }}\]
Take $2$ as a common from both numerator and denominator
\[ \Rightarrow \tan x = - \dfrac{{2 \times 3\left( {2 + \sqrt 7 } \right)}}{{2\left( {1 + 2\sqrt 7 } \right)}}\]
On cancelling $2$, we get
\[ \Rightarrow \tan x = - \dfrac{{3\left( {2 + \sqrt 7 } \right)}}{{1 + 2\sqrt 7 }}\]
Multiplying and dividing $1 - 2\sqrt 7 $ in the above equation, we get
\[ \Rightarrow \tan x = - \dfrac{{3\left( {2 + \sqrt 7 } \right)}}{{1 + 2\sqrt 7 }} \times \dfrac{{1 - 2\sqrt 7 }}{{1 - 2\sqrt 7 }} = - \dfrac{{3\left( {2 - 4\sqrt 7 + \sqrt 7 - 2 \times 7} \right)}}{{{1^2} - {{\left( {2\sqrt 7 } \right)}^2}}}\]
\[ \Rightarrow \tan x = - \dfrac{{3\left( {2 - 3\sqrt 7 - 14} \right)}}{{1 - 28}} = - \dfrac{{3\left( { - 12 - 3\sqrt 7 } \right)}}{{ - 27}} = - \dfrac{{3 \times 3\left( { - 4 - \sqrt 7 } \right)}}{{ - 27}} = - \dfrac{{9\left( { - 4 - \sqrt 7 } \right)}}{{ - 27}}\]
After cancelling out negative signs and division, we get
\[ \Rightarrow \tan x = \dfrac{{\left( { - 4 - \sqrt 7 } \right)}}{3}\]
It can also be written as,
\[ \Rightarrow \tan x = - \left( {\dfrac{{4 + \sqrt 7 }}{3}} \right)\]
Note: One must know how to convert ‘tan’, ‘cot’, ‘sec’, and ‘cosec’ terms in trigonometric formulae for all the terms, especially trigonometric ratios for half-angle, double angle, tripe angles, etc. One should know in which quadrant trigonometric angle of a particular function is positive or negative. We should take care of the calculations so as to be sure of our final answer.
Formulae used:
$\cos 2x = \dfrac{{1 - {{\tan }^2}x}}{{1 + {{\tan }^2}x}}$
$\sin 2x = \dfrac{{2\tan x}}{{1 + {{\tan }^2}x}}$
$\tan 2x = \dfrac{{2\tan x}}{{1 - {{\tan }^2}x}}$
The above written identities are trigonometric ratios of angle $2x$, so will convert them to angle $x$.
Complete step-by-step solution:
Given, $\cos x + \sin x = \dfrac{1}{2}$
Since, we know that $\cos 2x = \dfrac{{1 - {{\tan }^2}x}}{{1 + {{\tan }^2}x}}$, therefore $\cos x = \dfrac{{1 - {{\tan }^2}\dfrac{x}{2}}}{{1 + {{\tan }^2}\dfrac{x}{2}}}$
And, $\sin 2x = \dfrac{{2\tan x}}{{1 + {{\tan }^2}x}}$, therefore $\sin x = \dfrac{{2\tan \dfrac{x}{2}}}{{1 + {{\tan }^2}\dfrac{x}{2}}}$
Let us substitute the value of $\cos x$ and $\sin x$ in $\cos x + \sin x = \dfrac{1}{2}$
$\therefore \dfrac{{1 - {{\tan }^2}\dfrac{x}{2}}}{{1 + {{\tan }^2}\dfrac{x}{2}}} + \dfrac{{2\tan \dfrac{x}{2}}}{{1 + {{\tan }^2}\dfrac{x}{2}}} = \dfrac{1}{2}$
Let $\tan \dfrac{x}{2} = t$
$ \Rightarrow \dfrac{{1 - {t^2}}}{{1 + {t^2}}} + \dfrac{{2t}}{{1 + {t^2}}} = \dfrac{1}{2}$
Take L.C.M
\[ \Rightarrow \dfrac{{1 - {t^2} + 2t}}{{1 + {t^2}}} = \dfrac{1}{2}\]
On cross-multiplication, we get
\[ \Rightarrow 2\left( {1 - {t^2} + 2t} \right) = 1 + {t^2}\]
$ \Rightarrow 2 - 2{t^2} + 4t = 1 + {t^2}$
Shift all terms on one side
$ \Rightarrow 2{t^2} + {t^2} - 4t - 2 + 1 = 0$
$ \Rightarrow 3{t^2} - 4t - 1 = 0$
The above written equation does not exists real factors, hence we will solve it by quadratic formula $x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$ substituting the values in this equation, we get
$ \Rightarrow t = \dfrac{{ - \left( { - 4} \right) \pm \sqrt {{{\left( { - 4} \right)}^2} - 4 \times 3 \times - 1} }}{{2 \times 3}} = \dfrac{{4 \pm \sqrt {16 + 12} }}{{2 \times 3}} = \dfrac{{4 \pm \sqrt {28} }}{{2 \times 3}}$
$ \Rightarrow t = \dfrac{{4 \pm \sqrt {2 \times 2 \times 7} }}{{2 \times 3}} = \dfrac{{2\left( {2 \pm \sqrt 7 } \right)}}{{2 \times 3}}$
\[ \Rightarrow t = \dfrac{{2 \pm \sqrt 7 }}{3}\]
As $0 < x < \pi $
$ \Rightarrow 0 < \dfrac{x}{2} < \dfrac{\pi }{2}$
So, $\tan \dfrac{x}{2}$ is positive. (In first quadrant tangent is positive)
$\therefore t = \tan \dfrac{x}{2} = \dfrac{{2 + \sqrt 7 }}{3}$
Since, we know that $\tan 2x = \dfrac{{2\tan x}}{{1 - {{\tan }^2}x}}$ therefore, $\tan x = \dfrac{{2\tan \dfrac{x}{2}}}{{1 - {{\tan }^2}\dfrac{x}{2}}}$
Now, $\tan x = \dfrac{{2\tan \dfrac{x}{2}}}{{1 - {{\tan }^2}\dfrac{x}{2}}} = \dfrac{{2t}}{{1 - {t^2}}}$
Let us substitute the value of $t$
$ \Rightarrow \tan x = \dfrac{{2\left( {\dfrac{{2 + \sqrt 7 }}{3}} \right)}}{{1 - {{\left( {\dfrac{{2 + \sqrt 7 }}{3}} \right)}^2}}} = \dfrac{{\dfrac{{4 + 2\sqrt 7 }}{3}}}{{1 - {{\dfrac{{\left( {2 + \sqrt 7 } \right)}}{{{3^2}}}}^2}}} = \dfrac{{\dfrac{{4 + 2\sqrt 7 }}{3}}}{{{{\dfrac{{{3^2} - \left( {2 + \sqrt 7 } \right)}}{{{3^2}}}}^2}}}$
It can also be written as,
$ \Rightarrow \tan x = \dfrac{{4 + 2\sqrt 7 }}{3} \times \dfrac{{{3^2}}}{{{3^2} - {{\left( {2 + \sqrt 7 } \right)}^2}}}$
After cancelling out $3$ and expansion of ${\left( {2 + \sqrt 7 } \right)^2}$, we get
$ \Rightarrow \tan x = \dfrac{{3\left( {4 + 2\sqrt 7 } \right)}}{{{3^2} - \left( {4 + 7 + 4\sqrt 7 } \right)}} = \dfrac{{3\left( {4 + 2\sqrt 7 } \right)}}{{9 - \left( {11 + 4\sqrt 7 } \right)}} = \dfrac{{3\left( {4 + 2\sqrt 7 } \right)}}{{9 - 11 - 4\sqrt 7 }}$
\[ \Rightarrow \tan x = \dfrac{{3\left( {4 + 2\sqrt 7 } \right)}}{{ - 2 - 4\sqrt 7 }} = \dfrac{{3\left( {4 + 2\sqrt 7 } \right)}}{{ - \left( {2 + 4\sqrt 7 } \right)}}\]
It can also be written as,
\[ \Rightarrow \tan x = - \dfrac{{3\left( {4 + 2\sqrt 7 } \right)}}{{2 + 4\sqrt 7 }}\]
Take $2$ as a common from both numerator and denominator
\[ \Rightarrow \tan x = - \dfrac{{2 \times 3\left( {2 + \sqrt 7 } \right)}}{{2\left( {1 + 2\sqrt 7 } \right)}}\]
On cancelling $2$, we get
\[ \Rightarrow \tan x = - \dfrac{{3\left( {2 + \sqrt 7 } \right)}}{{1 + 2\sqrt 7 }}\]
Multiplying and dividing $1 - 2\sqrt 7 $ in the above equation, we get
\[ \Rightarrow \tan x = - \dfrac{{3\left( {2 + \sqrt 7 } \right)}}{{1 + 2\sqrt 7 }} \times \dfrac{{1 - 2\sqrt 7 }}{{1 - 2\sqrt 7 }} = - \dfrac{{3\left( {2 - 4\sqrt 7 + \sqrt 7 - 2 \times 7} \right)}}{{{1^2} - {{\left( {2\sqrt 7 } \right)}^2}}}\]
\[ \Rightarrow \tan x = - \dfrac{{3\left( {2 - 3\sqrt 7 - 14} \right)}}{{1 - 28}} = - \dfrac{{3\left( { - 12 - 3\sqrt 7 } \right)}}{{ - 27}} = - \dfrac{{3 \times 3\left( { - 4 - \sqrt 7 } \right)}}{{ - 27}} = - \dfrac{{9\left( { - 4 - \sqrt 7 } \right)}}{{ - 27}}\]
After cancelling out negative signs and division, we get
\[ \Rightarrow \tan x = \dfrac{{\left( { - 4 - \sqrt 7 } \right)}}{3}\]
It can also be written as,
\[ \Rightarrow \tan x = - \left( {\dfrac{{4 + \sqrt 7 }}{3}} \right)\]
Note: One must know how to convert ‘tan’, ‘cot’, ‘sec’, and ‘cosec’ terms in trigonometric formulae for all the terms, especially trigonometric ratios for half-angle, double angle, tripe angles, etc. One should know in which quadrant trigonometric angle of a particular function is positive or negative. We should take care of the calculations so as to be sure of our final answer.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

