
If we have the sum of angles \[A+B+C={{60}^{\circ }}\], then prove that \[\sec A\sec B\sec C+2\sum{\tan A\tan B}=2\].
Answer
543.9k+ views
Hint: Write all the terms by removing summation sign in the second term. Use: - \[\tan \theta =\dfrac{\sin \theta }{\cos \theta }\] and \[\sec \theta =\dfrac{1}{\cos \theta }\] to simplify the expression. Take L.C.M and convert the product of trigonometric functions into its sum of angles form by using the identity: - \[\cos A\cos B=\dfrac{\cos \left( A-B \right)+\cos \left( A+B \right)}{2}\] and \[\sin A\sin B=\dfrac{\cos \left( A-B \right)-\cos \left( A+B \right)}{2}\]. Finally cancel the common terms to get the answer.
Complete step-by-step solution
Here, we have been provided with the expression: -
L.H.S = \[\sec A\sec B\sec C+2\sum{\tan A\tan B}\]
Removing the summation sign, we get,
L.H.S = \[\sec A\sec B\sec C+2\left( \tan A\tan B+\tan B\tan C+\tan C\tan A \right)\]
Using the conversion, \[\tan \theta =\dfrac{\sin \theta }{\cos \theta }\] and \[\sec \theta =\dfrac{1}{\cos \theta }\], we get,
L.H.S = \[\dfrac{1}{\cos A\cos B\cos C}+2\left[ \dfrac{\sin A\sin B}{\cos A\cos B}+\dfrac{\sin B\sin C}{\cos B\cos C}+\dfrac{\sin C\sin A}{\cos C\cos A} \right]\]
Taking L.C.M in the above expression, we get,
L.H.S = \[\dfrac{1+2\left( \sin A\sin B\cos C+\sin B\sin C\cos A+\sin A\sin C\cos B \right)}{\cos A\cos B\cos C}\]
Now, \[\sin A\sin B\cos C=\dfrac{1}{2}\left( 2\sin A\sin B \right)\cos C\].
Using the identity: - \[2\sin A\sin B=\cos \left( A-B \right)-\cos \left( A+B \right)\], we get,
\[\begin{align}
& \Rightarrow \sin A\sin B\sin C=\dfrac{1}{2}\left[ \cos \left( A-B \right)\cos C-\cos \left( A+B \right)\cos C \right] \\
& \Rightarrow \sin A\sin B\sin C=\dfrac{1}{2}\times \dfrac{1}{2}\left[ 2\cos \left( A-B \right)\cos C-2\cos \left( A+B \right)\cos C \right] \\
& \Rightarrow \sin A\sin B\sin C=\dfrac{1}{4}\left[ 2\cos \left( A-B \right)\cos C-2\cos \left( A+B \right)\cos C \right] \\
\end{align}\]
Using the identity: - \[\cos \left( A-B \right)+\cos \left( A+B \right)=2\cos A\cos B\], we get,
\[\begin{align}
& \Rightarrow \sin A\sin B\cos C=\dfrac{1}{4}\left[ \cos \left( A-B-C \right)+\cos \left( A-B+C \right)-\cos \left( A+B-C \right)-\cos \left( A+B+C \right) \right] \\
& \Rightarrow \sin A\sin B\cos C=\dfrac{1}{4}\left[ \cos \left[ A-\left( B+C \right) \right]+\cos \left( A+C-B \right)-\cos {{60}^{\circ }}-\cos \left( A+B-C \right) \right] \\
& \Rightarrow \sin A\sin B\cos C=\dfrac{1}{4}\left[ \cos \left( A-{{60}^{\circ }}+A \right)+\cos \left( {{60}^{\circ }}-B-B \right)-\cos {{60}^{\circ }}-\cos \left( {{60}^{\circ }}-C-C \right) \right] \\
& \Rightarrow \sin A\sin B\cos C=\dfrac{1}{4}\left[ \cos \left( 2A-{{60}^{\circ }} \right)+\cos \left( {{60}^{\circ }}-2B \right)-\cos {{60}^{\circ }}-\cos \left( {{60}^{\circ }}-2C \right) \right] \\
\end{align}\]
Using the property: - \[\cos \left( A-B \right)=\cos \left( B-A \right)\] and substituting, \[\cos {{60}^{\circ }}=\dfrac{1}{2}\], we get,
\[\Rightarrow \sin A\sin B\cos C=\dfrac{1}{4}\left[ \cos \left( {{60}^{\circ }}-2A \right)+\cos \left( {{60}^{\circ }}-2B \right)-\cos \left( {{60}^{\circ }}-2C \right)-\dfrac{1}{2} \right]\]
On observing the pattern, we have,
\[\begin{align}
& \Rightarrow \sin B\sin C\cos A=\dfrac{1}{4}\left[ \cos \left( {{60}^{\circ }}-2B \right)+\cos \left( {{60}^{\circ }}-2C \right)-\cos \left( {{60}^{\circ }}-2A \right)-\dfrac{1}{2} \right] \\
& \Rightarrow \sin C\sin A\cos B=\dfrac{1}{4}\left[ \cos \left( {{60}^{\circ }}-2C \right)+\cos \left( {{60}^{\circ }}-2A \right)-\cos \left( {{60}^{\circ }}-2B \right)+\dfrac{1}{2} \right] \\
\end{align}\]
Now, let us simplify the denominator of L.H.S, i.e. \[\cos A\cos B\cos C\], so we have,
\[\begin{align}
& \Rightarrow \cos A\cos B\cos C=\dfrac{1}{2}\left( 2\cos A\cos B \right)\cos C \\
& \Rightarrow \cos A\cos B\cos C=\dfrac{1}{2}\left[ \cos \left( A-B \right)\cos C+\cos \left( A+B \right)\cos C \right] \\
& \Rightarrow \cos A\cos B\cos C=\dfrac{1}{4}\left[ 2\cos \left( A-B \right)\cos C+\cos \left( A+B \right)\cos C \right] \\
& \Rightarrow \cos A\cos B\cos C=\dfrac{1}{4}\left[ \cos \left( A-B-C \right)+\cos \left( A-B+C \right)+\cos \left( A+B+C \right)+\cos \left( A+B-C \right) \right] \\
& \Rightarrow \cos A\cos B\cos C=\dfrac{1}{4}\left[ \cos \left( {{60}^{\circ }}-2A \right)+\cos \left( {{60}^{\circ }}-2B \right)+\cos \left( {{60}^{\circ }}-2C \right)+\dfrac{1}{2} \right] \\
\end{align}\]
So, substituting the obtained values of numerator and denominator, we get the expression as: -
\[\Rightarrow \] L.H.S = \[\dfrac{1+\dfrac{2}{4}\left[ \cos \left( {{60}^{\circ }}-2A \right)+\cos \left( {{60}^{\circ }}-2B \right)+\cos \left( {{60}^{\circ }}-2C \right)-\dfrac{3}{2} \right]}{\dfrac{1}{4}\left[ \cos \left( {{60}^{\circ }}-2A \right)+\cos \left( {{60}^{\circ }}-2B \right)+\cos \left( {{60}^{\circ }}-2C \right)+\dfrac{1}{2} \right]}\]
\[\Rightarrow \] L.H.S = \[\dfrac{4+2\cos \left( {{60}^{\circ }}-2A \right)+2\cos \left( {{60}^{\circ }}-2B \right)+2\cos \left( {{60}^{\circ }}-2C \right)-3}{\cos \left( {{60}^{\circ }}-2A \right)+\cos \left( {{60}^{\circ }}-2B \right)+\cos \left( {{60}^{\circ }}-2C \right)+\dfrac{1}{2}}\]
\[\Rightarrow \] L.H.S = \[2\left[ \dfrac{1+2\left( \cos {{60}^{\circ }}-2A \right)+2\cos \left( {{60}^{\circ }}-2B \right)+2\cos \left( {{60}^{\circ }}-2C \right)}{2\cos \left( {{60}^{\circ }}-2A \right)+2\cos \left( {{60}^{\circ }}-2B \right)+2\cos \left( {{60}^{\circ }}-2C \right)+1} \right]\]
Cancelling the common terms, we get,
\[\Rightarrow \]L.H.S = 2 \[\times \] 1
\[\Rightarrow \] L.H.S = 2 = R.H.S
Hence, proved
Note: It is important to note that while simplifying the expression, \[\sin A\sin B\cos C\]. We have grouped \[\left( \sin A\sin B \right)\] first. One can also group \[\left( \sin A\cos C \right)\] or \[\left( \sin B\cos C \right)\] together and apply the identity: - \[\sin A\sin B=\dfrac{\sin \left( A+B \right)+\sin \left( A-B \right)}{2}\] to simplify. To change sine function into cosine function use the formula: - \[\sin \theta =\cos \left( {{90}^{\circ }}-\theta \right)\]. At last we need to convert all the functions into cosine functions to save time and solve the question in less steps.
Complete step-by-step solution
Here, we have been provided with the expression: -
L.H.S = \[\sec A\sec B\sec C+2\sum{\tan A\tan B}\]
Removing the summation sign, we get,
L.H.S = \[\sec A\sec B\sec C+2\left( \tan A\tan B+\tan B\tan C+\tan C\tan A \right)\]
Using the conversion, \[\tan \theta =\dfrac{\sin \theta }{\cos \theta }\] and \[\sec \theta =\dfrac{1}{\cos \theta }\], we get,
L.H.S = \[\dfrac{1}{\cos A\cos B\cos C}+2\left[ \dfrac{\sin A\sin B}{\cos A\cos B}+\dfrac{\sin B\sin C}{\cos B\cos C}+\dfrac{\sin C\sin A}{\cos C\cos A} \right]\]
Taking L.C.M in the above expression, we get,
L.H.S = \[\dfrac{1+2\left( \sin A\sin B\cos C+\sin B\sin C\cos A+\sin A\sin C\cos B \right)}{\cos A\cos B\cos C}\]
Now, \[\sin A\sin B\cos C=\dfrac{1}{2}\left( 2\sin A\sin B \right)\cos C\].
Using the identity: - \[2\sin A\sin B=\cos \left( A-B \right)-\cos \left( A+B \right)\], we get,
\[\begin{align}
& \Rightarrow \sin A\sin B\sin C=\dfrac{1}{2}\left[ \cos \left( A-B \right)\cos C-\cos \left( A+B \right)\cos C \right] \\
& \Rightarrow \sin A\sin B\sin C=\dfrac{1}{2}\times \dfrac{1}{2}\left[ 2\cos \left( A-B \right)\cos C-2\cos \left( A+B \right)\cos C \right] \\
& \Rightarrow \sin A\sin B\sin C=\dfrac{1}{4}\left[ 2\cos \left( A-B \right)\cos C-2\cos \left( A+B \right)\cos C \right] \\
\end{align}\]
Using the identity: - \[\cos \left( A-B \right)+\cos \left( A+B \right)=2\cos A\cos B\], we get,
\[\begin{align}
& \Rightarrow \sin A\sin B\cos C=\dfrac{1}{4}\left[ \cos \left( A-B-C \right)+\cos \left( A-B+C \right)-\cos \left( A+B-C \right)-\cos \left( A+B+C \right) \right] \\
& \Rightarrow \sin A\sin B\cos C=\dfrac{1}{4}\left[ \cos \left[ A-\left( B+C \right) \right]+\cos \left( A+C-B \right)-\cos {{60}^{\circ }}-\cos \left( A+B-C \right) \right] \\
& \Rightarrow \sin A\sin B\cos C=\dfrac{1}{4}\left[ \cos \left( A-{{60}^{\circ }}+A \right)+\cos \left( {{60}^{\circ }}-B-B \right)-\cos {{60}^{\circ }}-\cos \left( {{60}^{\circ }}-C-C \right) \right] \\
& \Rightarrow \sin A\sin B\cos C=\dfrac{1}{4}\left[ \cos \left( 2A-{{60}^{\circ }} \right)+\cos \left( {{60}^{\circ }}-2B \right)-\cos {{60}^{\circ }}-\cos \left( {{60}^{\circ }}-2C \right) \right] \\
\end{align}\]
Using the property: - \[\cos \left( A-B \right)=\cos \left( B-A \right)\] and substituting, \[\cos {{60}^{\circ }}=\dfrac{1}{2}\], we get,
\[\Rightarrow \sin A\sin B\cos C=\dfrac{1}{4}\left[ \cos \left( {{60}^{\circ }}-2A \right)+\cos \left( {{60}^{\circ }}-2B \right)-\cos \left( {{60}^{\circ }}-2C \right)-\dfrac{1}{2} \right]\]
On observing the pattern, we have,
\[\begin{align}
& \Rightarrow \sin B\sin C\cos A=\dfrac{1}{4}\left[ \cos \left( {{60}^{\circ }}-2B \right)+\cos \left( {{60}^{\circ }}-2C \right)-\cos \left( {{60}^{\circ }}-2A \right)-\dfrac{1}{2} \right] \\
& \Rightarrow \sin C\sin A\cos B=\dfrac{1}{4}\left[ \cos \left( {{60}^{\circ }}-2C \right)+\cos \left( {{60}^{\circ }}-2A \right)-\cos \left( {{60}^{\circ }}-2B \right)+\dfrac{1}{2} \right] \\
\end{align}\]
Now, let us simplify the denominator of L.H.S, i.e. \[\cos A\cos B\cos C\], so we have,
\[\begin{align}
& \Rightarrow \cos A\cos B\cos C=\dfrac{1}{2}\left( 2\cos A\cos B \right)\cos C \\
& \Rightarrow \cos A\cos B\cos C=\dfrac{1}{2}\left[ \cos \left( A-B \right)\cos C+\cos \left( A+B \right)\cos C \right] \\
& \Rightarrow \cos A\cos B\cos C=\dfrac{1}{4}\left[ 2\cos \left( A-B \right)\cos C+\cos \left( A+B \right)\cos C \right] \\
& \Rightarrow \cos A\cos B\cos C=\dfrac{1}{4}\left[ \cos \left( A-B-C \right)+\cos \left( A-B+C \right)+\cos \left( A+B+C \right)+\cos \left( A+B-C \right) \right] \\
& \Rightarrow \cos A\cos B\cos C=\dfrac{1}{4}\left[ \cos \left( {{60}^{\circ }}-2A \right)+\cos \left( {{60}^{\circ }}-2B \right)+\cos \left( {{60}^{\circ }}-2C \right)+\dfrac{1}{2} \right] \\
\end{align}\]
So, substituting the obtained values of numerator and denominator, we get the expression as: -
\[\Rightarrow \] L.H.S = \[\dfrac{1+\dfrac{2}{4}\left[ \cos \left( {{60}^{\circ }}-2A \right)+\cos \left( {{60}^{\circ }}-2B \right)+\cos \left( {{60}^{\circ }}-2C \right)-\dfrac{3}{2} \right]}{\dfrac{1}{4}\left[ \cos \left( {{60}^{\circ }}-2A \right)+\cos \left( {{60}^{\circ }}-2B \right)+\cos \left( {{60}^{\circ }}-2C \right)+\dfrac{1}{2} \right]}\]
\[\Rightarrow \] L.H.S = \[\dfrac{4+2\cos \left( {{60}^{\circ }}-2A \right)+2\cos \left( {{60}^{\circ }}-2B \right)+2\cos \left( {{60}^{\circ }}-2C \right)-3}{\cos \left( {{60}^{\circ }}-2A \right)+\cos \left( {{60}^{\circ }}-2B \right)+\cos \left( {{60}^{\circ }}-2C \right)+\dfrac{1}{2}}\]
\[\Rightarrow \] L.H.S = \[2\left[ \dfrac{1+2\left( \cos {{60}^{\circ }}-2A \right)+2\cos \left( {{60}^{\circ }}-2B \right)+2\cos \left( {{60}^{\circ }}-2C \right)}{2\cos \left( {{60}^{\circ }}-2A \right)+2\cos \left( {{60}^{\circ }}-2B \right)+2\cos \left( {{60}^{\circ }}-2C \right)+1} \right]\]
Cancelling the common terms, we get,
\[\Rightarrow \]L.H.S = 2 \[\times \] 1
\[\Rightarrow \] L.H.S = 2 = R.H.S
Hence, proved
Note: It is important to note that while simplifying the expression, \[\sin A\sin B\cos C\]. We have grouped \[\left( \sin A\sin B \right)\] first. One can also group \[\left( \sin A\cos C \right)\] or \[\left( \sin B\cos C \right)\] together and apply the identity: - \[\sin A\sin B=\dfrac{\sin \left( A+B \right)+\sin \left( A-B \right)}{2}\] to simplify. To change sine function into cosine function use the formula: - \[\sin \theta =\cos \left( {{90}^{\circ }}-\theta \right)\]. At last we need to convert all the functions into cosine functions to save time and solve the question in less steps.
Recently Updated Pages
Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 7 Maths: Engaging Questions & Answers for Success

Class 7 Question and Answer - Your Ultimate Solutions Guide

Master Class 6 Maths: Engaging Questions & Answers for Success

Class 6 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

