
If we have the limit as $\displaystyle \lim_{x \to 0}\dfrac{\log \left( 3+x \right)-\log \left( 3-x \right)}{x}=k$. Then find the value of k.
A. $-\dfrac{2}{3}$
B. 0
C. $-\dfrac{1}{3}$
D. $\dfrac{2}{3}$
Answer
571.2k+ views
Hint: We first apply the logarithmic theorem of \[\log \left( a \right)-\log \left( b \right)=\log \left( \dfrac{a}{b} \right)\] to find the proper value of x. Then we apply the limit theorem of log for $\displaystyle \lim_{x \to 0}\dfrac{{{\log }_{e}}\left( 1+x \right)}{x}=1$. The change of variable will work as the limit value remains the same. After that we place the value of the new variable to find the solution of the problem.
Complete step-by-step solution
We have the limit theorem of $\displaystyle \lim_{x \to 0}\dfrac{{{\log }_{e}}\left( 1+x \right)}{x}=1$.
For our given limit function, we use limit theorem \[\log \left( a \right)-\log \left( b \right)=\log \left( \dfrac{a}{b} \right)\].
So, from $\log \left( 3+x \right)-\log \left( 3-x \right)$, we get $\log \left( \dfrac{3+x}{3-x} \right)$.
We convert the function to make it similar of ${{\log }_{e}}\left( 1+x \right)$.
${{\log }_{e}}\left( \dfrac{3+x}{3-x} \right)={{\log }_{e}}\left( \dfrac{3-x+2x}{3-x} \right)={{\log }_{e}}\left( 1+\dfrac{2x}{3-x} \right)$.
As it’s given that $x \to 0$, we get $\dfrac{2x}{3-x}\to \dfrac{2\times 0}{3}\to 0$. We take $\dfrac{2x}{3-x}=z$.
So, $\displaystyle \lim_{x \to 0}\dfrac{\log \left( 3+x \right)-\log \left( 3-x \right)}{x}=\displaystyle \lim_{x \to 0}\left[ \dfrac{{{\log }_{e}}\left( 1+z \right)}{z}\times \dfrac{z}{x} \right]$.
We have the theorem that $\displaystyle \lim_{x \to a}\left[ f\left( x \right)g\left( x \right) \right]=\displaystyle \lim_{x \to a}f\left( x \right)\times \displaystyle \lim_{x \to a}g\left( x \right)$.
$\displaystyle \lim_{x \to 0}\left[ \dfrac{{{\log }_{e}}\left( 1+z \right)}{z}\times \dfrac{z}{x} \right]=\left[ \displaystyle \lim_{z\to 0}\dfrac{{{\log }_{e}}\left( 1+z \right)}{z} \right]\times \left[ \displaystyle \lim_{x \to 0}\dfrac{z}{x} \right]=\displaystyle \lim_{x \to 0}\dfrac{z}{x}$.
Even though the function changed its variable, the limit value being the same we have the same result.
Now we place the value of z to get the limit value.
\[\displaystyle \lim_{x \to 0}\dfrac{z}{x}=\displaystyle \lim_{x \to 0}\dfrac{2x}{x\left( 3-x \right)}=\displaystyle \lim_{x \to 0}\dfrac{2}{\left( 3-x \right)}=\dfrac{2}{3}\].
So, the limit value of the function $\displaystyle \lim_{x \to 0}\dfrac{\log \left( 3+x \right)-\log \left( 3-x \right)}{x}=k$ is $\dfrac{2}{3}$.
Therefore, the value of k is $\dfrac{2}{3}$. The correct option is D.
Note: We need to remember when we are applying the limit value the limiting variable comes into work. Other than that, we can keep any limit variable we want. So, the term $\displaystyle \lim_{x \to 0}\dfrac{z}{x}$ is valid even though the variables are mixed.
Complete step-by-step solution
We have the limit theorem of $\displaystyle \lim_{x \to 0}\dfrac{{{\log }_{e}}\left( 1+x \right)}{x}=1$.
For our given limit function, we use limit theorem \[\log \left( a \right)-\log \left( b \right)=\log \left( \dfrac{a}{b} \right)\].
So, from $\log \left( 3+x \right)-\log \left( 3-x \right)$, we get $\log \left( \dfrac{3+x}{3-x} \right)$.
We convert the function to make it similar of ${{\log }_{e}}\left( 1+x \right)$.
${{\log }_{e}}\left( \dfrac{3+x}{3-x} \right)={{\log }_{e}}\left( \dfrac{3-x+2x}{3-x} \right)={{\log }_{e}}\left( 1+\dfrac{2x}{3-x} \right)$.
As it’s given that $x \to 0$, we get $\dfrac{2x}{3-x}\to \dfrac{2\times 0}{3}\to 0$. We take $\dfrac{2x}{3-x}=z$.
So, $\displaystyle \lim_{x \to 0}\dfrac{\log \left( 3+x \right)-\log \left( 3-x \right)}{x}=\displaystyle \lim_{x \to 0}\left[ \dfrac{{{\log }_{e}}\left( 1+z \right)}{z}\times \dfrac{z}{x} \right]$.
We have the theorem that $\displaystyle \lim_{x \to a}\left[ f\left( x \right)g\left( x \right) \right]=\displaystyle \lim_{x \to a}f\left( x \right)\times \displaystyle \lim_{x \to a}g\left( x \right)$.
$\displaystyle \lim_{x \to 0}\left[ \dfrac{{{\log }_{e}}\left( 1+z \right)}{z}\times \dfrac{z}{x} \right]=\left[ \displaystyle \lim_{z\to 0}\dfrac{{{\log }_{e}}\left( 1+z \right)}{z} \right]\times \left[ \displaystyle \lim_{x \to 0}\dfrac{z}{x} \right]=\displaystyle \lim_{x \to 0}\dfrac{z}{x}$.
Even though the function changed its variable, the limit value being the same we have the same result.
Now we place the value of z to get the limit value.
\[\displaystyle \lim_{x \to 0}\dfrac{z}{x}=\displaystyle \lim_{x \to 0}\dfrac{2x}{x\left( 3-x \right)}=\displaystyle \lim_{x \to 0}\dfrac{2}{\left( 3-x \right)}=\dfrac{2}{3}\].
So, the limit value of the function $\displaystyle \lim_{x \to 0}\dfrac{\log \left( 3+x \right)-\log \left( 3-x \right)}{x}=k$ is $\dfrac{2}{3}$.
Therefore, the value of k is $\dfrac{2}{3}$. The correct option is D.
Note: We need to remember when we are applying the limit value the limiting variable comes into work. Other than that, we can keep any limit variable we want. So, the term $\displaystyle \lim_{x \to 0}\dfrac{z}{x}$ is valid even though the variables are mixed.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

