
If we have the integral $\int{{{x}^{5}}{{e}^{-{{x}^{2}}}}dx}=g\left( x \right){{e}^{-{{x}^{2}}}}+C$, then the value of g(-1) is
[a] $\dfrac{-5}{2}$
[b] 1
[c] $\dfrac{1}{2}$
[d] -1
Answer
589.2k+ views
Hint: Put $-{{x}^{2}}=t$ and hence prove that $\int{{{e}^{-{{x}^{2}}}}{{x}^{5}}dx}=-\dfrac{1}{2}\int{{{t}^{2}}{{e}^{t}}dt}$. Use integration by parts and hence evaluate the integral. Revert back to the original variable and equate the expression to ${{e}^{-{{x}^{2}}}}g\left( x \right)+C$. Compare like terms and hence find the value of g(x). Hence find the value of g(-1).
Complete step-by-step solution:
Let $I=\int{{{x}^{5}}{{e}^{-{{x}^{2}}}}dx}$
Put $-{{x}^{2}}=t$
Differentiating with respect to x, we get
$\begin{align}
& -2xdx=dt \\
& \Rightarrow xdx=\dfrac{-dt}{2} \\
\end{align}$
Hence, we have
$\begin{align}
& I=\int{{{x}^{5}}}{{e}^{-{{x}^{2}}}}dx=\int{{{e}^{-{{x}^{2}}}}{{\left( -{{x}^{2}} \right)}^{2}}xdx} \\
& =\int{{{e}^{t}}{{t}^{2}}\left( \dfrac{-dt}{2} \right)}=-\dfrac{1}{2}\int{{{t}^{2}}{{e}^{t}}dt} \\
\end{align}$
We know that if $\int{f\left( x \right)dx}=u\left( x \right)$ and $\dfrac{d}{dx}\left( g\left( x \right) \right)=v\left( x \right)$, then
$\int{f\left( x \right)g\left( x \right)dx}=g\left( x \right)u\left( x \right)-\int{v\left( x \right)u\left( x \right)dx}$. This is known as integration by parts rule. The function f(x) is called the second function and the function g(x) is called the first function.
Taking $f\left( t \right)={{e}^{t}}$ and $g\left( t \right)={{t}^{2}}$.
We have
$\int{f\left( t \right)dt}=\int{{{e}^{t}}dt}={{e}^{t}}$ and $\dfrac{d}{dt}\left( g\left( t \right) \right)=2t$
Hence, we have
$I=\dfrac{-1}{2}\left( {{t}^{2}}{{e}^{t}}-2\int{t{{e}^{t}}dt} \right)$
Again applying integration by parts taking $f\left( x \right)={{e}^{t}}$ and $g\left( x \right)=t$, we get
$\begin{align}
& I=-\dfrac{{{t}^{2}}{{e}^{t}}}{2}+t{{e}^{t}}-\int{{{e}^{t}}dt}=-\dfrac{{{t}^{2}}{{e}^{t}}}{2}+t{{e}^{t}}-{{e}^{t}}+C \\
& ={{e}^{t}}\left( \dfrac{-{{t}^{2}}}{2}+t-1 \right)+C \\
\end{align}$
Reverting to original variable, we get
$I={{e}^{-{{x}^{2}}}}\left( \dfrac{-{{x}^{4}}}{2}-{{x}^{2}}-1 \right)+C$
Hence, we have
$\begin{align}
& g\left( x \right){{e}^{-{{x}^{2}}}}={{e}^{-{{x}^{2}}}}\left( \dfrac{-{{x}^{4}}}{2}-{{x}^{2}}-1 \right) \\
& \Rightarrow g\left( x \right)=\left( \dfrac{-{{x}^{4}}}{2}-{{x}^{2}}-1 \right) \\
\end{align}$
Hence, we have
$g\left( -1 \right)=\left( \dfrac{-1}{2}-1-1 \right)=\dfrac{-5}{2}$
Hence option [a] is correct.
Note: Alternative Solution:
We can simplify the integral $\int{{{t}^{2}}{{e}^{t}}dt}$ using the fact that $\int{{{e}^{x}}\left( f\left( x \right)+f'\left( x \right) \right)}={{e}^{x}}f\left( x \right)+C$
We have
$\begin{align}
& \int{{{t}^{2}}{{e}^{t}}dt}=\int{{{e}^{t}}\left( {{t}^{2}}+2t-2t-2+2 \right)}dt \\
& =\int{{{e}^{t}}\left( {{t}^{2}}+2t \right)dt}+\int{{{e}^{t}}\left( -2t-2 \right)dt}+2\int{{{e}^{t}}dt} \\
& ={{t}^{2}}{{e}^{t}}-2t{{e}^{t}}+2{{e}^{t}}+C \\
\end{align}$
Which is the same as obtained above.
Complete step-by-step solution:
Let $I=\int{{{x}^{5}}{{e}^{-{{x}^{2}}}}dx}$
Put $-{{x}^{2}}=t$
Differentiating with respect to x, we get
$\begin{align}
& -2xdx=dt \\
& \Rightarrow xdx=\dfrac{-dt}{2} \\
\end{align}$
Hence, we have
$\begin{align}
& I=\int{{{x}^{5}}}{{e}^{-{{x}^{2}}}}dx=\int{{{e}^{-{{x}^{2}}}}{{\left( -{{x}^{2}} \right)}^{2}}xdx} \\
& =\int{{{e}^{t}}{{t}^{2}}\left( \dfrac{-dt}{2} \right)}=-\dfrac{1}{2}\int{{{t}^{2}}{{e}^{t}}dt} \\
\end{align}$
We know that if $\int{f\left( x \right)dx}=u\left( x \right)$ and $\dfrac{d}{dx}\left( g\left( x \right) \right)=v\left( x \right)$, then
$\int{f\left( x \right)g\left( x \right)dx}=g\left( x \right)u\left( x \right)-\int{v\left( x \right)u\left( x \right)dx}$. This is known as integration by parts rule. The function f(x) is called the second function and the function g(x) is called the first function.
Taking $f\left( t \right)={{e}^{t}}$ and $g\left( t \right)={{t}^{2}}$.
We have
$\int{f\left( t \right)dt}=\int{{{e}^{t}}dt}={{e}^{t}}$ and $\dfrac{d}{dt}\left( g\left( t \right) \right)=2t$
Hence, we have
$I=\dfrac{-1}{2}\left( {{t}^{2}}{{e}^{t}}-2\int{t{{e}^{t}}dt} \right)$
Again applying integration by parts taking $f\left( x \right)={{e}^{t}}$ and $g\left( x \right)=t$, we get
$\begin{align}
& I=-\dfrac{{{t}^{2}}{{e}^{t}}}{2}+t{{e}^{t}}-\int{{{e}^{t}}dt}=-\dfrac{{{t}^{2}}{{e}^{t}}}{2}+t{{e}^{t}}-{{e}^{t}}+C \\
& ={{e}^{t}}\left( \dfrac{-{{t}^{2}}}{2}+t-1 \right)+C \\
\end{align}$
Reverting to original variable, we get
$I={{e}^{-{{x}^{2}}}}\left( \dfrac{-{{x}^{4}}}{2}-{{x}^{2}}-1 \right)+C$
Hence, we have
$\begin{align}
& g\left( x \right){{e}^{-{{x}^{2}}}}={{e}^{-{{x}^{2}}}}\left( \dfrac{-{{x}^{4}}}{2}-{{x}^{2}}-1 \right) \\
& \Rightarrow g\left( x \right)=\left( \dfrac{-{{x}^{4}}}{2}-{{x}^{2}}-1 \right) \\
\end{align}$
Hence, we have
$g\left( -1 \right)=\left( \dfrac{-1}{2}-1-1 \right)=\dfrac{-5}{2}$
Hence option [a] is correct.
Note: Alternative Solution:
We can simplify the integral $\int{{{t}^{2}}{{e}^{t}}dt}$ using the fact that $\int{{{e}^{x}}\left( f\left( x \right)+f'\left( x \right) \right)}={{e}^{x}}f\left( x \right)+C$
We have
$\begin{align}
& \int{{{t}^{2}}{{e}^{t}}dt}=\int{{{e}^{t}}\left( {{t}^{2}}+2t-2t-2+2 \right)}dt \\
& =\int{{{e}^{t}}\left( {{t}^{2}}+2t \right)dt}+\int{{{e}^{t}}\left( -2t-2 \right)dt}+2\int{{{e}^{t}}dt} \\
& ={{t}^{2}}{{e}^{t}}-2t{{e}^{t}}+2{{e}^{t}}+C \\
\end{align}$
Which is the same as obtained above.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

India is a sovereign socialist secular democratic republic class 12 social science CBSE

How many states of matter are there in total class 12 chemistry CBSE

