
If we have the expressions, $\csc \theta -\sin \theta ={{a}^{3}},\sec \theta -\cos \theta ={{b}^{3}}$, then prove that, ${{a}^{2}}{{b}^{2}}\left( {{a}^{2}}+{{b}^{2}} \right)=1$.
Answer
612k+ views
Hint: We will use the trigonometric relations, $\csc \theta =\dfrac{1}{\sin \theta }$ and $\sec \theta =\dfrac{1}{\cos \theta }$ to simplify the given expression. We will then use the relations, $1-{{\cos }^{2}}\theta ={{\sin }^{2}}\theta $ and $1-{{\sin }^{2}}\theta ={{\cos }^{2}}\theta $. Finally we will substitute the obtained values $a$ and $b$ in the expression that we have to prove, ${{a}^{2}}{{b}^{2}}\left( {{a}^{2}}+{{b}^{2}} \right)$ to get 1 as the final result.
Complete step-by-step answer:
It is given in the question that $\csc \theta -\sin \theta ={{a}^{3}},\sec \theta -\cos \theta ={{b}^{3}}$, and we have to prove that, ${{a}^{2}}{{b}^{2}}\left( {{a}^{2}}+{{b}^{2}} \right)=1$.
Let us consider the expression, $\csc \theta -\sin \theta ={{a}^{3}}\ldots \ldots \ldots \left( i \right)$
We know that $\csc \theta =\dfrac{1}{\sin \theta }$, so by substituting the value of $\csc \theta $ in equation (i), we get,
$\dfrac{1}{\sin \theta }-\sin \theta ={{a}^{3}}\ldots \ldots \ldots \left( ii \right)$
By taking the LCM in equation (ii), we will get,
$\dfrac{1-{{\sin }^{2}}\theta }{\sin \theta }={{a}^{3}}\ldots \ldots \ldots \left( iii \right)$
We know that $1-{{\sin }^{2}}\theta ={{\cos }^{2}}\theta $, so by substituting it equation (iii), we get,
$\begin{align}
& \dfrac{{{\cos }^{2}}\theta }{\sin \theta }={{a}^{3}} \\
& \Rightarrow a={{\left( \dfrac{{{\cos }^{2}}\theta }{\sin \theta } \right)}^{\dfrac{1}{3}}} \\
& \Rightarrow a=\dfrac{{{\cos }^{\dfrac{2}{3}}}\theta }{{{\sin }^{\dfrac{1}{3}}}\theta } \\
\end{align}$
Similarly, we will now consider the other expression, $\sec \theta -\cos \theta ={{b}^{3}}\ldots \ldots \ldots \left( iv \right)$
We know that $\sec \theta =\dfrac{1}{\cos \theta }$, so by substituting the value of $\sec \theta $ in equation (iv), we get,
$\dfrac{1}{\cos \theta }-\cos \theta ={{b}^{3}}\ldots \ldots \ldots \left( v \right)$
By taking the LCM in equation (v), we will get,
$\dfrac{1-{{\cos }^{2}}\theta }{\cos \theta }={{b}^{3}}\ldots \ldots \ldots \left( vi \right)$
We know that $1-{{\cos }^{2}}\theta ={{\sin }^{2}}\theta $, so by substituting it equation (vi),
we get,
$\begin{align}
& \dfrac{{{\sin }^{2}}\theta }{\cos \theta }={{b}^{3}} \\
& \Rightarrow b={{\left( \dfrac{{{\sin }^{2}}\theta }{\cos \theta } \right)}^{\dfrac{1}{3}}} \\
& \Rightarrow b=\dfrac{{{\sin }^{\dfrac{2}{3}}}\theta }{{{\cos }^{\dfrac{1}{3}}}\theta } \\
\end{align}$
Now, we have, $a=\dfrac{{{\cos }^{\dfrac{2}{3}}}\theta }{{{\sin }^{\dfrac{1}{3}}}\theta }$ and $b=\dfrac{{{\sin }^{\dfrac{2}{3}}}\theta }{{{\cos }^{\dfrac{1}{3}}}\theta }$. We have the left hand side or the LHS of the expression to be proved as, ${{a}^{2}}{{b}^{2}}\left( {{a}^{2}}+{{b}^{2}} \right)$. By substituting the values of $a$ and $b$in this expression, we get,
$\begin{align}
& {{\left( \dfrac{{{\cos }^{\dfrac{2}{3}}}\theta }{{{\sin }^{\dfrac{1}{3}}}\theta } \right)}^{2}}{{\left( \dfrac{{{\sin }^{\dfrac{2}{3}}}\theta }{{{\cos }^{\dfrac{1}{3}}}\theta } \right)}^{2}}\left\{ {{\left( \dfrac{{{\cos }^{\dfrac{2}{3}}}\theta }{{{\sin }^{\dfrac{1}{3}}}\theta } \right)}^{2}}+{{\left( \dfrac{{{\sin }^{\dfrac{2}{3}}}\theta }{{{\cos }^{\dfrac{1}{3}}}\theta } \right)}^{2}} \right\} \\
& =\dfrac{{{\cos }^{\dfrac{4}{3}}}\theta }{{{\sin }^{\dfrac{2}{3}}}\theta }\times \dfrac{{{\sin }^{\dfrac{4}{3}}}\theta }{{{\cos }^{\dfrac{2}{3}}}\theta }\times \left\{ \dfrac{{{\cos }^{\dfrac{4}{3}}}\theta }{{{\sin }^{\dfrac{2}{3}}}\theta }+\dfrac{{{\sin }^{\dfrac{4}{3}}}\theta }{{{\cos }^{\dfrac{2}{3}}}\theta } \right\} \\
& ={{\cos }^{\dfrac{2}{3}}}\theta \times {{\sin }^{\dfrac{2}{3}}}\theta \times \left\{ \dfrac{{{\cos }^{\dfrac{4}{3}}}\theta }{{{\sin }^{\dfrac{2}{3}}}\theta }+\dfrac{{{\sin }^{\dfrac{4}{3}}}\theta }{{{\cos }^{\dfrac{2}{3}}}\theta } \right\} \\
& ={{\cos }^{\dfrac{2}{3}}}\theta \times {{\sin }^{\dfrac{2}{3}}}\theta \times \left\{ \dfrac{{{\cos }^{\dfrac{4}{3}}}\theta \times {{\cos }^{\dfrac{2}{3}}}\theta +{{\sin }^{\dfrac{4}{3}}}\theta \times {{\sin }^{\dfrac{2}{3}}}\theta }{{{\sin }^{\dfrac{2}{3}}}\theta \times {{\cos }^{\dfrac{2}{3}}}\theta } \right\} \\
& ={{\cos }^{\dfrac{2}{3}}}\theta \times {{\sin }^{\dfrac{2}{3}}}\theta \times \left\{ \dfrac{{{\cos }^{\dfrac{6}{3}}}\theta +{{\sin }^{\dfrac{6}{3}}}\theta }{{{\sin }^{\dfrac{2}{3}}}\theta \times {{\cos }^{\dfrac{2}{3}}}\theta } \right\} \\
& ={{\cos }^{\dfrac{2}{3}}}\theta \times {{\sin }^{\dfrac{2}{3}}}\theta \times \left\{ \dfrac{{{\cos }^{2}}\theta +{{\sin }^{2}}\theta }{{{\sin }^{\dfrac{2}{3}}}\theta \times {{\cos }^{\dfrac{2}{3}}}\theta } \right\} \\
\end{align}$
We know that, ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$, so by substituting that in the above expression, we get,
${{\cos }^{\dfrac{2}{3}}}\theta \times {{\sin }^{\dfrac{2}{3}}}\theta \times \left\{ \dfrac{1}{{{\cos }^{\dfrac{2}{3}}}\theta \times {{\sin }^{\dfrac{2}{3}}}\theta } \right\}$
By cancelling the similar terms, we get, 1, which is the right hand side or the RHS of the given expression. Therefore, LHS = RHS.
Hence, we have proved the expression given in the question.
Note: This is a very basic trigonometric function, but the students usually make the mistakes while doing the operations of multiplication and division of powers in exponents. Hence it is advisable to solve this question step by step and not in one go. In questions, where you have to prove, always pay attention to both sides of the expression, that is the LHS and the RHS to get a better idea of the steps to prove them equal.
Complete step-by-step answer:
It is given in the question that $\csc \theta -\sin \theta ={{a}^{3}},\sec \theta -\cos \theta ={{b}^{3}}$, and we have to prove that, ${{a}^{2}}{{b}^{2}}\left( {{a}^{2}}+{{b}^{2}} \right)=1$.
Let us consider the expression, $\csc \theta -\sin \theta ={{a}^{3}}\ldots \ldots \ldots \left( i \right)$
We know that $\csc \theta =\dfrac{1}{\sin \theta }$, so by substituting the value of $\csc \theta $ in equation (i), we get,
$\dfrac{1}{\sin \theta }-\sin \theta ={{a}^{3}}\ldots \ldots \ldots \left( ii \right)$
By taking the LCM in equation (ii), we will get,
$\dfrac{1-{{\sin }^{2}}\theta }{\sin \theta }={{a}^{3}}\ldots \ldots \ldots \left( iii \right)$
We know that $1-{{\sin }^{2}}\theta ={{\cos }^{2}}\theta $, so by substituting it equation (iii), we get,
$\begin{align}
& \dfrac{{{\cos }^{2}}\theta }{\sin \theta }={{a}^{3}} \\
& \Rightarrow a={{\left( \dfrac{{{\cos }^{2}}\theta }{\sin \theta } \right)}^{\dfrac{1}{3}}} \\
& \Rightarrow a=\dfrac{{{\cos }^{\dfrac{2}{3}}}\theta }{{{\sin }^{\dfrac{1}{3}}}\theta } \\
\end{align}$
Similarly, we will now consider the other expression, $\sec \theta -\cos \theta ={{b}^{3}}\ldots \ldots \ldots \left( iv \right)$
We know that $\sec \theta =\dfrac{1}{\cos \theta }$, so by substituting the value of $\sec \theta $ in equation (iv), we get,
$\dfrac{1}{\cos \theta }-\cos \theta ={{b}^{3}}\ldots \ldots \ldots \left( v \right)$
By taking the LCM in equation (v), we will get,
$\dfrac{1-{{\cos }^{2}}\theta }{\cos \theta }={{b}^{3}}\ldots \ldots \ldots \left( vi \right)$
We know that $1-{{\cos }^{2}}\theta ={{\sin }^{2}}\theta $, so by substituting it equation (vi),
we get,
$\begin{align}
& \dfrac{{{\sin }^{2}}\theta }{\cos \theta }={{b}^{3}} \\
& \Rightarrow b={{\left( \dfrac{{{\sin }^{2}}\theta }{\cos \theta } \right)}^{\dfrac{1}{3}}} \\
& \Rightarrow b=\dfrac{{{\sin }^{\dfrac{2}{3}}}\theta }{{{\cos }^{\dfrac{1}{3}}}\theta } \\
\end{align}$
Now, we have, $a=\dfrac{{{\cos }^{\dfrac{2}{3}}}\theta }{{{\sin }^{\dfrac{1}{3}}}\theta }$ and $b=\dfrac{{{\sin }^{\dfrac{2}{3}}}\theta }{{{\cos }^{\dfrac{1}{3}}}\theta }$. We have the left hand side or the LHS of the expression to be proved as, ${{a}^{2}}{{b}^{2}}\left( {{a}^{2}}+{{b}^{2}} \right)$. By substituting the values of $a$ and $b$in this expression, we get,
$\begin{align}
& {{\left( \dfrac{{{\cos }^{\dfrac{2}{3}}}\theta }{{{\sin }^{\dfrac{1}{3}}}\theta } \right)}^{2}}{{\left( \dfrac{{{\sin }^{\dfrac{2}{3}}}\theta }{{{\cos }^{\dfrac{1}{3}}}\theta } \right)}^{2}}\left\{ {{\left( \dfrac{{{\cos }^{\dfrac{2}{3}}}\theta }{{{\sin }^{\dfrac{1}{3}}}\theta } \right)}^{2}}+{{\left( \dfrac{{{\sin }^{\dfrac{2}{3}}}\theta }{{{\cos }^{\dfrac{1}{3}}}\theta } \right)}^{2}} \right\} \\
& =\dfrac{{{\cos }^{\dfrac{4}{3}}}\theta }{{{\sin }^{\dfrac{2}{3}}}\theta }\times \dfrac{{{\sin }^{\dfrac{4}{3}}}\theta }{{{\cos }^{\dfrac{2}{3}}}\theta }\times \left\{ \dfrac{{{\cos }^{\dfrac{4}{3}}}\theta }{{{\sin }^{\dfrac{2}{3}}}\theta }+\dfrac{{{\sin }^{\dfrac{4}{3}}}\theta }{{{\cos }^{\dfrac{2}{3}}}\theta } \right\} \\
& ={{\cos }^{\dfrac{2}{3}}}\theta \times {{\sin }^{\dfrac{2}{3}}}\theta \times \left\{ \dfrac{{{\cos }^{\dfrac{4}{3}}}\theta }{{{\sin }^{\dfrac{2}{3}}}\theta }+\dfrac{{{\sin }^{\dfrac{4}{3}}}\theta }{{{\cos }^{\dfrac{2}{3}}}\theta } \right\} \\
& ={{\cos }^{\dfrac{2}{3}}}\theta \times {{\sin }^{\dfrac{2}{3}}}\theta \times \left\{ \dfrac{{{\cos }^{\dfrac{4}{3}}}\theta \times {{\cos }^{\dfrac{2}{3}}}\theta +{{\sin }^{\dfrac{4}{3}}}\theta \times {{\sin }^{\dfrac{2}{3}}}\theta }{{{\sin }^{\dfrac{2}{3}}}\theta \times {{\cos }^{\dfrac{2}{3}}}\theta } \right\} \\
& ={{\cos }^{\dfrac{2}{3}}}\theta \times {{\sin }^{\dfrac{2}{3}}}\theta \times \left\{ \dfrac{{{\cos }^{\dfrac{6}{3}}}\theta +{{\sin }^{\dfrac{6}{3}}}\theta }{{{\sin }^{\dfrac{2}{3}}}\theta \times {{\cos }^{\dfrac{2}{3}}}\theta } \right\} \\
& ={{\cos }^{\dfrac{2}{3}}}\theta \times {{\sin }^{\dfrac{2}{3}}}\theta \times \left\{ \dfrac{{{\cos }^{2}}\theta +{{\sin }^{2}}\theta }{{{\sin }^{\dfrac{2}{3}}}\theta \times {{\cos }^{\dfrac{2}{3}}}\theta } \right\} \\
\end{align}$
We know that, ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$, so by substituting that in the above expression, we get,
${{\cos }^{\dfrac{2}{3}}}\theta \times {{\sin }^{\dfrac{2}{3}}}\theta \times \left\{ \dfrac{1}{{{\cos }^{\dfrac{2}{3}}}\theta \times {{\sin }^{\dfrac{2}{3}}}\theta } \right\}$
By cancelling the similar terms, we get, 1, which is the right hand side or the RHS of the given expression. Therefore, LHS = RHS.
Hence, we have proved the expression given in the question.
Note: This is a very basic trigonometric function, but the students usually make the mistakes while doing the operations of multiplication and division of powers in exponents. Hence it is advisable to solve this question step by step and not in one go. In questions, where you have to prove, always pay attention to both sides of the expression, that is the LHS and the RHS to get a better idea of the steps to prove them equal.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

