
If we have the cube roots of unity as \[1,\omega ,{{\omega }^{2}}\] then prove that $\left( 2-\omega \right)\left( 2-{{\omega }^{2}} \right)\left( 2-{{\omega }^{10}} \right)\left( 2-{{\omega }^{11}} \right)=49$
Answer
606.6k+ views
Hint: To find the value of the $\left( 2-\omega \right)\left( 2-{{\omega }^{2}} \right)\left( 2-{{\omega }^{10}} \right)\left( 2-{{\omega }^{11}} \right)$ , we need to derive ${{\omega }^{10}}$ and ${{\omega }^{11}}$ in the terms $\left( z-{{\omega }^{10}} \right)$ and $\left( z-{{\omega }^{11}} \right)$ and then simplify the left hand side.
Complete step-by-step solution -
Here, we are given that the cube roots of unity as \[1,\omega ,{{\omega }^{2}}\] . The equation is given as:
${{x}^{3}}-1=0..............\left( i \right)$
As given in question $1,\omega $ and ${{\omega }^{2}}$ are the roots of this equation. Now, we will put $\omega $ in place of $x$ as it is one of the root. After doing this, we will get following:
${{\omega }^{3}}-1-0................\left( ii \right)$
In the above equation, we are going to use identity ${{a}^{3}}-{{b}^{3}}=\left( a-b \right)\left( {{a}^{2}}+{{b}^{2}}+ab \right)$ . Thus, applying this identity in the above equation, we will get:
$\left( \omega -1 \right)\left( {{\omega }^{2}}+\omega +1 \right)=0$
In the above equation, we have got the choices either $\left( \omega -1 \right)=0$ or $\left( {{\omega }^{2}}+\omega +1 \right)=0$ . Let us consider two cases
Case 1:
$\begin{align}
& \omega -1=0 \\
& \Rightarrow \omega =1 \\
\end{align}$
It is not possible since $\omega $ is an imaginary number.
Case 2: ${{\omega }^{2}}+\omega +1=0.............\left( iii \right)$
When we will solve this equation, we will get imaginary values of $\omega $ . Also ${{\omega }^{2}}+\omega +1=0$ is an important result which we are going to use in our solution.
Now from equation (ii), we have ${{\omega }^{3}}-1=0$
$\Rightarrow {{\omega }^{3}}=1................\left( iv \right)$
Now, we will multiply both sides of the equation with ${{\omega }^{3}}$ . After doing this we will get:
\[\begin{align}
& {{\omega }^{3}}\times {{\omega }^{3}}={{\omega }^{3}} \\
& {{\omega }^{6}}={{\omega }^{3}}.............\left( v \right) \\
\end{align}\]
From equation (iv) and (v), we get:
${{\omega }^{6}}=1............\left( vi \right)$
Now, we will multiply with ${{\omega }^{3}}$ on both sides of the above equation. After doing this we will get:
$\begin{align}
& {{\omega }^{6}}\times {{\omega }^{3}}={{\omega }^{3}} \\
& \Rightarrow {{\omega }^{9}}={{\omega }^{3}}............\left( vii \right) \\
\end{align}$
From equation (iv) and (vii), we will get:
${{\omega }^{9}}=1.............\left( viii \right)$
Now, we will multiply both sides of the equation with $\omega $ . After doing this, we will get:
${{\omega }^{10}}=\omega .........\left( ix \right)$
We will multiply both sides of the equation (ix) with $\omega $ . After doing this we will get
${{\omega }^{11}}={{\omega }^{2}}...........\left( x \right)$
Now, we are going to put the values of ${{\omega }^{11}}$ and ${{\omega }^{10}}$ from equation (x) and (ix) into $\left( 2-\omega \right)\left( 2-{{\omega }^{2}} \right)\left( 2-{{\omega }^{10}} \right)\left( 2-{{\omega }^{11}} \right)$ . After doing this we will get:
\[\begin{align}
& \left( 2-\omega \right)\left( 2-{{\omega }^{2}} \right)\left( 2-{{\omega }^{10}} \right)\left( 2-{{\omega }^{11}} \right)=\left( 2-\omega \right)\left( 2-{{\omega }^{2}} \right)\left( 2-\omega \right)\left( 2-{{\omega }^{2}} \right) \\
& \Rightarrow \left( 2-\omega \right)\left( 2-{{\omega }^{2}} \right)\left( 2-{{\omega }^{10}} \right)\left( 2-{{\omega }^{11}} \right)={{\left( 2-\omega \right)}^{2}}{{\left( 2-{{\omega }^{2}} \right)}^{2}} \\
& \Rightarrow \left( 2-\omega \right)\left( 2-{{\omega }^{2}} \right)\left( 2-{{\omega }^{10}} \right)\left( 2-{{\omega }^{11}} \right)={{\left[ \left( 2-\omega \right)\left( 2-{{\omega }^{2}} \right) \right]}^{2}} \\
& \Rightarrow \left( 2-\omega \right)\left( 2-{{\omega }^{2}} \right)\left( 2-{{\omega }^{10}} \right)\left( 2-{{\omega }^{11}} \right)={{\left[ 4-2{{\omega }^{2}}-2\omega +{{\omega }^{3}} \right]}^{2}} \\
& \Rightarrow \left( 2-\omega \right)\left( 2-{{\omega }^{2}} \right)\left( 2-{{\omega }^{10}} \right)\left( 2-{{\omega }^{11}} \right)={{\left[ 4-2\left( \omega +{{\omega }^{2}} \right)+{{\omega }^{3}} \right]}^{2}}................\left( xi \right) \\
\end{align}\]
We know that the values of ${{\omega }^{3}}=1$ . Also, we know from equation (iii) that,
$\begin{align}
& 1+\omega +{{\omega }^{2}}=0 \\
& \Rightarrow {{\omega }^{2}}+\omega =-1 \\
\end{align}$
Using above values in equation (xi), we get
\[\begin{align}
& \Rightarrow \left( 2-\omega \right)\left( 2-{{\omega }^{2}} \right)\left( 2-{{\omega }^{10}} \right)\left( 2-{{\omega }^{11}} \right)={{\left[ 4-2\left( -1 \right)+1 \right]}^{2}} \\
& \Rightarrow \left( 2-\omega \right)\left( 2-{{\omega }^{2}} \right)\left( 2-{{\omega }^{10}} \right)\left( 2-{{\omega }^{11}} \right)={{\left[ 7 \right]}^{2}} \\
& \Rightarrow \left( 2-\omega \right)\left( 2-{{\omega }^{2}} \right)\left( 2-{{\omega }^{10}} \right)\left( 2-{{\omega }^{11}} \right)=49 \\
\end{align}\]
Hence proved
Note: In the equation (xi), instead of using the formula \[1+\omega +{{\omega }^{2}}=0\] , we could have used the actual values of $\omega $ and ${{\omega }^{2}}$. The value of $\omega =\dfrac{-1+\sqrt{3}i}{2}$ and the value of ${{\omega }^{2}}=\dfrac{-1-\sqrt{3}i}{2}$ .Also, we could have solved the above question by expanding the term \[\left( 2-\omega \right)\left( 2-{{\omega }^{2}} \right)\left( 2-{{\omega }^{10}} \right)\left( 2-{{\omega }^{11}} \right)\] . The answer would still have been same.
Complete step-by-step solution -
Here, we are given that the cube roots of unity as \[1,\omega ,{{\omega }^{2}}\] . The equation is given as:
${{x}^{3}}-1=0..............\left( i \right)$
As given in question $1,\omega $ and ${{\omega }^{2}}$ are the roots of this equation. Now, we will put $\omega $ in place of $x$ as it is one of the root. After doing this, we will get following:
${{\omega }^{3}}-1-0................\left( ii \right)$
In the above equation, we are going to use identity ${{a}^{3}}-{{b}^{3}}=\left( a-b \right)\left( {{a}^{2}}+{{b}^{2}}+ab \right)$ . Thus, applying this identity in the above equation, we will get:
$\left( \omega -1 \right)\left( {{\omega }^{2}}+\omega +1 \right)=0$
In the above equation, we have got the choices either $\left( \omega -1 \right)=0$ or $\left( {{\omega }^{2}}+\omega +1 \right)=0$ . Let us consider two cases
Case 1:
$\begin{align}
& \omega -1=0 \\
& \Rightarrow \omega =1 \\
\end{align}$
It is not possible since $\omega $ is an imaginary number.
Case 2: ${{\omega }^{2}}+\omega +1=0.............\left( iii \right)$
When we will solve this equation, we will get imaginary values of $\omega $ . Also ${{\omega }^{2}}+\omega +1=0$ is an important result which we are going to use in our solution.
Now from equation (ii), we have ${{\omega }^{3}}-1=0$
$\Rightarrow {{\omega }^{3}}=1................\left( iv \right)$
Now, we will multiply both sides of the equation with ${{\omega }^{3}}$ . After doing this we will get:
\[\begin{align}
& {{\omega }^{3}}\times {{\omega }^{3}}={{\omega }^{3}} \\
& {{\omega }^{6}}={{\omega }^{3}}.............\left( v \right) \\
\end{align}\]
From equation (iv) and (v), we get:
${{\omega }^{6}}=1............\left( vi \right)$
Now, we will multiply with ${{\omega }^{3}}$ on both sides of the above equation. After doing this we will get:
$\begin{align}
& {{\omega }^{6}}\times {{\omega }^{3}}={{\omega }^{3}} \\
& \Rightarrow {{\omega }^{9}}={{\omega }^{3}}............\left( vii \right) \\
\end{align}$
From equation (iv) and (vii), we will get:
${{\omega }^{9}}=1.............\left( viii \right)$
Now, we will multiply both sides of the equation with $\omega $ . After doing this, we will get:
${{\omega }^{10}}=\omega .........\left( ix \right)$
We will multiply both sides of the equation (ix) with $\omega $ . After doing this we will get
${{\omega }^{11}}={{\omega }^{2}}...........\left( x \right)$
Now, we are going to put the values of ${{\omega }^{11}}$ and ${{\omega }^{10}}$ from equation (x) and (ix) into $\left( 2-\omega \right)\left( 2-{{\omega }^{2}} \right)\left( 2-{{\omega }^{10}} \right)\left( 2-{{\omega }^{11}} \right)$ . After doing this we will get:
\[\begin{align}
& \left( 2-\omega \right)\left( 2-{{\omega }^{2}} \right)\left( 2-{{\omega }^{10}} \right)\left( 2-{{\omega }^{11}} \right)=\left( 2-\omega \right)\left( 2-{{\omega }^{2}} \right)\left( 2-\omega \right)\left( 2-{{\omega }^{2}} \right) \\
& \Rightarrow \left( 2-\omega \right)\left( 2-{{\omega }^{2}} \right)\left( 2-{{\omega }^{10}} \right)\left( 2-{{\omega }^{11}} \right)={{\left( 2-\omega \right)}^{2}}{{\left( 2-{{\omega }^{2}} \right)}^{2}} \\
& \Rightarrow \left( 2-\omega \right)\left( 2-{{\omega }^{2}} \right)\left( 2-{{\omega }^{10}} \right)\left( 2-{{\omega }^{11}} \right)={{\left[ \left( 2-\omega \right)\left( 2-{{\omega }^{2}} \right) \right]}^{2}} \\
& \Rightarrow \left( 2-\omega \right)\left( 2-{{\omega }^{2}} \right)\left( 2-{{\omega }^{10}} \right)\left( 2-{{\omega }^{11}} \right)={{\left[ 4-2{{\omega }^{2}}-2\omega +{{\omega }^{3}} \right]}^{2}} \\
& \Rightarrow \left( 2-\omega \right)\left( 2-{{\omega }^{2}} \right)\left( 2-{{\omega }^{10}} \right)\left( 2-{{\omega }^{11}} \right)={{\left[ 4-2\left( \omega +{{\omega }^{2}} \right)+{{\omega }^{3}} \right]}^{2}}................\left( xi \right) \\
\end{align}\]
We know that the values of ${{\omega }^{3}}=1$ . Also, we know from equation (iii) that,
$\begin{align}
& 1+\omega +{{\omega }^{2}}=0 \\
& \Rightarrow {{\omega }^{2}}+\omega =-1 \\
\end{align}$
Using above values in equation (xi), we get
\[\begin{align}
& \Rightarrow \left( 2-\omega \right)\left( 2-{{\omega }^{2}} \right)\left( 2-{{\omega }^{10}} \right)\left( 2-{{\omega }^{11}} \right)={{\left[ 4-2\left( -1 \right)+1 \right]}^{2}} \\
& \Rightarrow \left( 2-\omega \right)\left( 2-{{\omega }^{2}} \right)\left( 2-{{\omega }^{10}} \right)\left( 2-{{\omega }^{11}} \right)={{\left[ 7 \right]}^{2}} \\
& \Rightarrow \left( 2-\omega \right)\left( 2-{{\omega }^{2}} \right)\left( 2-{{\omega }^{10}} \right)\left( 2-{{\omega }^{11}} \right)=49 \\
\end{align}\]
Hence proved
Note: In the equation (xi), instead of using the formula \[1+\omega +{{\omega }^{2}}=0\] , we could have used the actual values of $\omega $ and ${{\omega }^{2}}$. The value of $\omega =\dfrac{-1+\sqrt{3}i}{2}$ and the value of ${{\omega }^{2}}=\dfrac{-1-\sqrt{3}i}{2}$ .Also, we could have solved the above question by expanding the term \[\left( 2-\omega \right)\left( 2-{{\omega }^{2}} \right)\left( 2-{{\omega }^{10}} \right)\left( 2-{{\omega }^{11}} \right)\] . The answer would still have been same.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

