
If we have the binomial coefficient as \[^{n}{{C}_{r}}{{:}^{n}}{{C}_{r+1}}{{:}^{n}}{{C}_{r+2}}=3:4:5\] , then the value of \[2n+3r\] is
(A) 238
(B) 220
(C) 203
(D) 240
Answer
475.5k+ views
Hint: First of all, split the ratio as \[^{n}{{C}_{r}}{{:}^{n}}{{C}_{r+1}}=3:4\] and \[^{n}{{C}_{r+1}}{{:}^{n}}{{C}_{r+2}}=4:5\] . Now, use the formula \[^{n}{{C}_{r}}\] , \[^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\] and modify the ratios. We can write \[\left( r+1 \right)!\] as a product of \[r!\] and \[\left( r+1 \right)\] . Similarly, \[\left( n-r \right)!\] can be written as a product of \[\left( n-r-1 \right)!\] and \[\left( n-r \right)\]. Now, solve it further and get the value of \[n\] and \[r\] . Using the value of \[n\] and \[r\] calculate the value of \[2n+3r\].
Complete step-by-step solution
According to the question, we are given that
\[^{n}{{C}_{r}}{{:}^{n}}{{C}_{r+1}}{{:}^{n}}{{C}_{r+2}}=3:4:5\] ……………………………….(1)
Let us split the above ratio.
On splitting, we get
\[^{n}{{C}_{r}}{{:}^{n}}{{C}_{r+1}}=3:4\] ……………………………………(2)
\[^{n}{{C}_{r+1}}{{:}^{n}}{{C}_{r+2}}=4:5\] ………………………………………….(3)
We know the formula for \[^{n}{{C}_{r}}\] , \[^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\] …………………………………….(4)
Now, applying the formula shown in equation (4) and on simplifying equation (2), we get
\[\begin{align}
& \Rightarrow \dfrac{^{n}{{C}_{r}}}{^{n}{{C}_{r+1}}}=\dfrac{3}{4} \\
& \Rightarrow \dfrac{\dfrac{n!}{r!\left( n-r \right)!}}{\dfrac{n!}{\left( r+1 \right)!\left( n-r-1 \right)!}}=\dfrac{3}{4} \\
\end{align}\]
……………………………………(5)
The above equation needs to be more simplified.
We can write \[\left( r+1 \right)!\] as product of \[r!\] and \[\left( r+1 \right)\] ………………………………..(6)
Similarly, \[\left( n-r \right)!\] can be written as product of \[\left( n-r-1 \right)!\] and \[\left( n-r \right)\] ……………………………………(7)
Now, from equation (5), equation (6), and equation (7), we get
\[\begin{align}
& \Rightarrow \dfrac{r!\left( r+1 \right)\left( n-r-1 \right)!}{r!\left( n-r-1 \right)!\left( n-r \right)}=\dfrac{3}{4} \\
& \Rightarrow \dfrac{\left( r+1 \right)}{\left( n-r \right)}=\dfrac{3}{4} \\
& \Rightarrow 4r+4=3n-3r \\
& \Rightarrow 4r+3r=3n-4 \\
\end{align}\]
\[\Rightarrow 7r=3n-4\] …………………………………(8)
Similarly, applying the formula shown in equation (4) and on simplifying equation (3), we get
\[\begin{align}
& \Rightarrow \dfrac{^{n}{{C}_{r+1}}}{^{n}{{C}_{r+2}}}=\dfrac{4}{5} \\
& \Rightarrow \dfrac{\dfrac{n!}{\left( r+1 \right)!\left( n-r-1 \right)!}}{\dfrac{n!}{\left( r+2 \right)!\left( n-r-2 \right)!}}=\dfrac{4}{5} \\
\end{align}\]
\[\Rightarrow \dfrac{\left( r+2 \right)!\left( n-r-2 \right)!}{\left( r+1 \right)!\left( n-r-1 \right)!}=\dfrac{4}{5}\] ……………………………………(9)
The above equation needs to be more simplified.
We can write \[\left( r+2 \right)!\] as product of \[\left( r+1 \right)!\] and \[\left( r+2 \right)\] ………………………………..(10)
Similarly, \[\left( n-r-1 \right)!\] can be written as product of \[\left( n-r-2 \right)!\] and \[\left( n-r-1 \right)\] ……………………………………(11)
Now, from equation (9), equation (10), and equation (11), we get
\[\begin{align}
& \Rightarrow \dfrac{\left( r+1 \right)!\left( r+2 \right)\left( n-r-2 \right)!}{\left( r+1 \right)!\left( n-r-2 \right)!\left( n-r-1 \right)}=\dfrac{4}{5} \\
& \Rightarrow \dfrac{\left( r+2 \right)}{\left( n-r-1 \right)}=\dfrac{4}{5} \\
& \Rightarrow 5r+10=4n-4r-4 \\
& \Rightarrow 5r+4r=4n-4-10 \\
\end{align}\]
\[\Rightarrow 9r=4n-14\] …………………………………(12)
On multiplying equation (8) by 9, we get
\[\Rightarrow 7r\times 9=\left( 3n-4 \right)\times 9\]
\[\Rightarrow 63r=27n-36\]…………………………………………………..(13)
On multiplying equation (12) by 7, we get
\[\Rightarrow 9r\times 7=\left( 4n-14 \right)\times 7\]
\[\Rightarrow 63r=28n-98\] ………………………………………………….(14)
Similarly, on subtracting equation (13) from equation (14), we get
\[\begin{align}
& \Rightarrow 63r-63r=28n-98-\left( 27n-36 \right) \\
& \Rightarrow 0=28n-98-27n+36 \\
& \Rightarrow 0=n-62 \\
\end{align}\]
\[\Rightarrow 62=n\] …………………………………………(15)
On putting \[n=62\] in equation (12), we get
\[\begin{align}
& \Rightarrow 9r=4\times 62-14 \\
& \Rightarrow 9r=234 \\
& \Rightarrow r=\dfrac{234}{9} \\
\end{align}\]
\[\Rightarrow r=26\] ………………………………………(16)
We are asked to find the value of \[2n+3r\] ……………………………….(17)
Now, from equation (15), equation (16), and equation (17), we get
\[\begin{align}
& =2\times 62+3\times 62 \\
& =124+186 \\
& =310 \\
\end{align}\]
Therefore, the value of \[2n+3r\] is 310.
Note: For this type of question, where we have some expression in terms of \[^{n}{{C}_{r}}\] . The best way to approach this type of question is to follow the basic formula for \[^{n}{{C}_{r}}\] , \[^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\] . Use this formula and modify the expression to simplify it into simpler form.
Complete step-by-step solution
According to the question, we are given that
\[^{n}{{C}_{r}}{{:}^{n}}{{C}_{r+1}}{{:}^{n}}{{C}_{r+2}}=3:4:5\] ……………………………….(1)
Let us split the above ratio.
On splitting, we get
\[^{n}{{C}_{r}}{{:}^{n}}{{C}_{r+1}}=3:4\] ……………………………………(2)
\[^{n}{{C}_{r+1}}{{:}^{n}}{{C}_{r+2}}=4:5\] ………………………………………….(3)
We know the formula for \[^{n}{{C}_{r}}\] , \[^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\] …………………………………….(4)
Now, applying the formula shown in equation (4) and on simplifying equation (2), we get
\[\begin{align}
& \Rightarrow \dfrac{^{n}{{C}_{r}}}{^{n}{{C}_{r+1}}}=\dfrac{3}{4} \\
& \Rightarrow \dfrac{\dfrac{n!}{r!\left( n-r \right)!}}{\dfrac{n!}{\left( r+1 \right)!\left( n-r-1 \right)!}}=\dfrac{3}{4} \\
\end{align}\]
……………………………………(5)
The above equation needs to be more simplified.
We can write \[\left( r+1 \right)!\] as product of \[r!\] and \[\left( r+1 \right)\] ………………………………..(6)
Similarly, \[\left( n-r \right)!\] can be written as product of \[\left( n-r-1 \right)!\] and \[\left( n-r \right)\] ……………………………………(7)
Now, from equation (5), equation (6), and equation (7), we get
\[\begin{align}
& \Rightarrow \dfrac{r!\left( r+1 \right)\left( n-r-1 \right)!}{r!\left( n-r-1 \right)!\left( n-r \right)}=\dfrac{3}{4} \\
& \Rightarrow \dfrac{\left( r+1 \right)}{\left( n-r \right)}=\dfrac{3}{4} \\
& \Rightarrow 4r+4=3n-3r \\
& \Rightarrow 4r+3r=3n-4 \\
\end{align}\]
\[\Rightarrow 7r=3n-4\] …………………………………(8)
Similarly, applying the formula shown in equation (4) and on simplifying equation (3), we get
\[\begin{align}
& \Rightarrow \dfrac{^{n}{{C}_{r+1}}}{^{n}{{C}_{r+2}}}=\dfrac{4}{5} \\
& \Rightarrow \dfrac{\dfrac{n!}{\left( r+1 \right)!\left( n-r-1 \right)!}}{\dfrac{n!}{\left( r+2 \right)!\left( n-r-2 \right)!}}=\dfrac{4}{5} \\
\end{align}\]
\[\Rightarrow \dfrac{\left( r+2 \right)!\left( n-r-2 \right)!}{\left( r+1 \right)!\left( n-r-1 \right)!}=\dfrac{4}{5}\] ……………………………………(9)
The above equation needs to be more simplified.
We can write \[\left( r+2 \right)!\] as product of \[\left( r+1 \right)!\] and \[\left( r+2 \right)\] ………………………………..(10)
Similarly, \[\left( n-r-1 \right)!\] can be written as product of \[\left( n-r-2 \right)!\] and \[\left( n-r-1 \right)\] ……………………………………(11)
Now, from equation (9), equation (10), and equation (11), we get
\[\begin{align}
& \Rightarrow \dfrac{\left( r+1 \right)!\left( r+2 \right)\left( n-r-2 \right)!}{\left( r+1 \right)!\left( n-r-2 \right)!\left( n-r-1 \right)}=\dfrac{4}{5} \\
& \Rightarrow \dfrac{\left( r+2 \right)}{\left( n-r-1 \right)}=\dfrac{4}{5} \\
& \Rightarrow 5r+10=4n-4r-4 \\
& \Rightarrow 5r+4r=4n-4-10 \\
\end{align}\]
\[\Rightarrow 9r=4n-14\] …………………………………(12)
On multiplying equation (8) by 9, we get
\[\Rightarrow 7r\times 9=\left( 3n-4 \right)\times 9\]
\[\Rightarrow 63r=27n-36\]…………………………………………………..(13)
On multiplying equation (12) by 7, we get
\[\Rightarrow 9r\times 7=\left( 4n-14 \right)\times 7\]
\[\Rightarrow 63r=28n-98\] ………………………………………………….(14)
Similarly, on subtracting equation (13) from equation (14), we get
\[\begin{align}
& \Rightarrow 63r-63r=28n-98-\left( 27n-36 \right) \\
& \Rightarrow 0=28n-98-27n+36 \\
& \Rightarrow 0=n-62 \\
\end{align}\]
\[\Rightarrow 62=n\] …………………………………………(15)
On putting \[n=62\] in equation (12), we get
\[\begin{align}
& \Rightarrow 9r=4\times 62-14 \\
& \Rightarrow 9r=234 \\
& \Rightarrow r=\dfrac{234}{9} \\
\end{align}\]
\[\Rightarrow r=26\] ………………………………………(16)
We are asked to find the value of \[2n+3r\] ……………………………….(17)
Now, from equation (15), equation (16), and equation (17), we get
\[\begin{align}
& =2\times 62+3\times 62 \\
& =124+186 \\
& =310 \\
\end{align}\]
Therefore, the value of \[2n+3r\] is 310.
Note: For this type of question, where we have some expression in terms of \[^{n}{{C}_{r}}\] . The best way to approach this type of question is to follow the basic formula for \[^{n}{{C}_{r}}\] , \[^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\] . Use this formula and modify the expression to simplify it into simpler form.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Trending doubts
State and prove Bernoullis theorem class 11 physics CBSE

Raindrops are spherical because of A Gravitational class 11 physics CBSE

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

Write the differences between monocot plants and dicot class 11 biology CBSE

Why is steel more elastic than rubber class 11 physics CBSE

Explain why a There is no atmosphere on the moon b class 11 physics CBSE
