
If we have the algebraic expression as $x-y=8$ and $xy=2$ then find the value of ${{x}^{2}}+{{y}^{2}}$.
Answer
562.8k+ views
HINT:- In this problem, we are going to calculate the value of one variable either $x$ or $y$ from the given equation $x-y=8$, and then we are going to substitute the value of that variable in the second given equation i.e. $xy=2$. Here we get $2$ equations. Add the two obtained equations to find the value of ${{x}^{2}}+{{y}^{2}}$
Complete step-by-step solution -
Given that $x-y=8$
The value of $x$ from the above equation is $x=y+8.....\left( \text{i} \right)$
Substituting the value of $x$ in the given equation $xy=2$ then
$\left( y+8 \right)y=2$
Use the distributive property $a\left( b+c \right)=ab+bc$ in the above equation then
\[{{y}^{2}}+8y=2\]
Now subtracting the $2$ from both sides in the above equation then
\[\begin{align}
& {{y}^{2}}+8y-2=2-2 \\
&\Rightarrow {{y}^{2}}+8y-2=0.......\left( \text{ii} \right)
\end{align}\]
We get the value of ${{x}^{2}}+{{y}^{2}}$ by solving equations $\left( \text{i} \right),\left( \text{ii} \right)$
Now, squaring the equation $\left( \text{i} \right)$, to find the value of $8y$ then
${{x}^{2}}={{\left( y+8 \right)}^{2}}$
We know that ${{a}^{2}}=a\times a$ then
${{x}^{2}}=\left( y+8 \right)\left( y+8 \right)$
Again, use the distributing property that $\left( a+b \right)\left( c+d \right)=\left( a+b \right)c+\left( a+b \right)d$ by treating $\left( a+b \right)$ as a single term, then
$\begin{align}
& {{x}^{2}}=y\left( y+8 \right)+8\left( y+8 \right) \\
&\Rightarrow {{x}^{2}}={{y}^{2}}+8y+8y+64
\end{align}$
Now subtracting the value ${{y}^{2}}+64$ on both sides then
\[\begin{align}
& {{x}^{2}}-\left( {{y}^{2}}+64 \right)=2\left( 8y \right)+\left( {{y}^{2}}+64 \right)-\left( {{y}^{2}}+64 \right) \\
&\Rightarrow {{x}^{2}}-{{y}^{2}}-64=2\left( 8y \right)
\end{align}\]
Now dividing the above equation with $2$ then
$\begin{align}
& \dfrac{2\left( 8y \right)}{2}=\dfrac{{{x}^{2}}-{{y}^{2}}-64}{2} \\
&\Rightarrow 8y=\dfrac{{{x}^{2}}-{{y}^{2}}-64}{2}
\end{align}$
Now substitute the value of $8y$ in the equation $\left( \text{ii} \right)$, then
\[\begin{align}
& {{y}^{2}}+8y-2=0 \\
&\Rightarrow {{y}^{2}}+\dfrac{{{x}^{2}}-{{y}^{2}}-64}{2}-2=0
\end{align}\]
Multiplying the above equation with $2$ then
\[\begin{align}
& 2{{y}^{2}}+2\left( \dfrac{{{x}^{2}}-{{y}^{2}}-64}{2} \right)-2\left( 2 \right)=2\left( 0 \right)\\
&\Rightarrow 2{{y}^{2}}+{{x}^{2}}-{{y}^{2}}-64-4=0 \\
&\Rightarrow {{x}^{2}}+{{y}^{2}}=68
\end{align}\]
Hence the value of ${{x}^{2}}+{{y}^{2}}$ is $68$.
NOTE:-We can solve this problem in another method i.e.
Squaring the given equation $x-y=8$ then
${{\left( x-y \right)}^{2}}={{8}^{2}}$
Using the formula ${{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab$ in the above equation
${{x}^{2}}+{{y}^{2}}-2xy=64$
Substitute the given value $xy=8$ in the above equation then
$\begin{align}
& {{x}^{2}}+{{y}^{2}}-2\left( 2 \right)=64 \\
&\Rightarrow {{x}^{2}}+{{y}^{2}}=64+4 \\
&\Rightarrow {{x}^{2}}+{{y}^{2}}=68
\end{align}$
In both the methods we get the same answer.
Complete step-by-step solution -
Given that $x-y=8$
The value of $x$ from the above equation is $x=y+8.....\left( \text{i} \right)$
Substituting the value of $x$ in the given equation $xy=2$ then
$\left( y+8 \right)y=2$
Use the distributive property $a\left( b+c \right)=ab+bc$ in the above equation then
\[{{y}^{2}}+8y=2\]
Now subtracting the $2$ from both sides in the above equation then
\[\begin{align}
& {{y}^{2}}+8y-2=2-2 \\
&\Rightarrow {{y}^{2}}+8y-2=0.......\left( \text{ii} \right)
\end{align}\]
We get the value of ${{x}^{2}}+{{y}^{2}}$ by solving equations $\left( \text{i} \right),\left( \text{ii} \right)$
Now, squaring the equation $\left( \text{i} \right)$, to find the value of $8y$ then
${{x}^{2}}={{\left( y+8 \right)}^{2}}$
We know that ${{a}^{2}}=a\times a$ then
${{x}^{2}}=\left( y+8 \right)\left( y+8 \right)$
Again, use the distributing property that $\left( a+b \right)\left( c+d \right)=\left( a+b \right)c+\left( a+b \right)d$ by treating $\left( a+b \right)$ as a single term, then
$\begin{align}
& {{x}^{2}}=y\left( y+8 \right)+8\left( y+8 \right) \\
&\Rightarrow {{x}^{2}}={{y}^{2}}+8y+8y+64
\end{align}$
Now subtracting the value ${{y}^{2}}+64$ on both sides then
\[\begin{align}
& {{x}^{2}}-\left( {{y}^{2}}+64 \right)=2\left( 8y \right)+\left( {{y}^{2}}+64 \right)-\left( {{y}^{2}}+64 \right) \\
&\Rightarrow {{x}^{2}}-{{y}^{2}}-64=2\left( 8y \right)
\end{align}\]
Now dividing the above equation with $2$ then
$\begin{align}
& \dfrac{2\left( 8y \right)}{2}=\dfrac{{{x}^{2}}-{{y}^{2}}-64}{2} \\
&\Rightarrow 8y=\dfrac{{{x}^{2}}-{{y}^{2}}-64}{2}
\end{align}$
Now substitute the value of $8y$ in the equation $\left( \text{ii} \right)$, then
\[\begin{align}
& {{y}^{2}}+8y-2=0 \\
&\Rightarrow {{y}^{2}}+\dfrac{{{x}^{2}}-{{y}^{2}}-64}{2}-2=0
\end{align}\]
Multiplying the above equation with $2$ then
\[\begin{align}
& 2{{y}^{2}}+2\left( \dfrac{{{x}^{2}}-{{y}^{2}}-64}{2} \right)-2\left( 2 \right)=2\left( 0 \right)\\
&\Rightarrow 2{{y}^{2}}+{{x}^{2}}-{{y}^{2}}-64-4=0 \\
&\Rightarrow {{x}^{2}}+{{y}^{2}}=68
\end{align}\]
Hence the value of ${{x}^{2}}+{{y}^{2}}$ is $68$.
NOTE:-We can solve this problem in another method i.e.
Squaring the given equation $x-y=8$ then
${{\left( x-y \right)}^{2}}={{8}^{2}}$
Using the formula ${{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab$ in the above equation
${{x}^{2}}+{{y}^{2}}-2xy=64$
Substitute the given value $xy=8$ in the above equation then
$\begin{align}
& {{x}^{2}}+{{y}^{2}}-2\left( 2 \right)=64 \\
&\Rightarrow {{x}^{2}}+{{y}^{2}}=64+4 \\
&\Rightarrow {{x}^{2}}+{{y}^{2}}=68
\end{align}$
In both the methods we get the same answer.
Recently Updated Pages
Master Class 9 Social Science: Engaging Questions & Answers for Success

Master Class 9 Science: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Master Class 9 Maths: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Which places in India experience sunrise first and class 9 social science CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Write the 6 fundamental rights of India and explain in detail

Difference Between Plant Cell and Animal Cell

What is pollution? How many types of pollution? Define it

What is the Full Form of ISI and RAW


