
If we have given $\sin \theta = \sin \alpha $
Then find which option satisfies the given identity.
$
{\text{A}}{\text{. }}\dfrac{{\theta + \alpha }}{2}{\text{ is any odd multiple of }}\dfrac{\pi }{2}{\text{ and }}\dfrac{{\theta - \alpha }}{2}{\text{ is any multiple of }}\pi \\
{\text{B}}{\text{. }}\dfrac{{\theta + \alpha }}{2}{\text{ is any even multiple of }}\dfrac{\pi }{2}{\text{ and }}\dfrac{{\theta - \alpha }}{2}{\text{ is any multiple of }}\pi \\
{\text{C}}{\text{. }}\dfrac{{\theta + \alpha }}{2}{\text{ is any multiple of }}\dfrac{\pi }{2}{\text{ and }}\dfrac{{\theta - \alpha }}{2}{\text{ is any odd multiple of }}\pi \\
{\text{D}}{\text{. }}\dfrac{{\theta + \alpha }}{2}{\text{ is any multiple of }}\dfrac{\pi }{2}{\text{ and }}\dfrac{{\theta - \alpha }}{2}{\text{ is any even multiple of }}\pi \\
$
Answer
611.1k+ views
- Hint:- In this question first we have to convert the given question ($\sin \theta = \sin \alpha $) into a form in which we can equate terms involved in it to zero, using trigonometric identities. Then, use the condition $\sin (a)$ and $\cos (b)$ are zero to get the result in required form.
Complete step-by-step solution -
Given: $\sin \theta = \sin \alpha $ eq.1
$ \Rightarrow \sin \theta - \sin \alpha {\text{ = 0}}$
We know, from trigonometric identities
$\sin (a) - \sin (b) = 2\cos \left( {\dfrac{{a + b}}{2}} \right).\sin \left( {\dfrac{{a - b}}{2}} \right)$
On applying above formula on eq.1 we get
$
\Rightarrow \sin \theta - \sin \alpha {\text{ = 0}} \\
\Rightarrow 2\cos \left( {\dfrac{{\theta + \alpha }}{2}} \right).\sin \left( {\dfrac{{\theta - \alpha }}{2}} \right) = 0{\text{ eq}}{\text{.2}} \\
$
We know,
If $\sin \theta = 0$
Then, $\theta = n\pi $ eq.3
\[{\text{where }}n = {\text{integer}}\]
And if $\cos \theta = 0$
Then, $\theta = \dfrac{{(2n + 1)\pi }}{2}$ eq.4
\[{\text{where }}n = {\text{integer}}\]
Now, using eq.3 and eq.4 we can write eq.2 as
$
\Rightarrow 2\cos \left( {\dfrac{{\theta + \alpha }}{2}} \right).\sin \left( {\dfrac{{\theta - \alpha }}{2}} \right) = 0 \\
\Rightarrow \cos \left( {\dfrac{{\theta + \alpha }}{2}} \right) = 0{\text{ or }}\sin \left( {\dfrac{{\theta - \alpha }}{2}} \right) = 0 \\
$
On solving these two conditions separately we get
$
\Rightarrow \cos \left( {\dfrac{{\theta + \alpha }}{2}} \right) = 0{\text{ }} \\
\Rightarrow \left( {\dfrac{{\theta + \alpha }}{2}} \right) = \dfrac{{(2n + 1)\pi }}{2}{\text{ \{ from eq}}{\text{.4\} }} \\
{\text{where }}n = {\text{integer}} \\
$
Therefore, \[\left( {\dfrac{{\theta + \alpha }}{2}} \right)\] is the odd multiple of $\dfrac{\pi }{2}$. Statement 1
Now, consider \[\sin \left( {\dfrac{{\theta - \alpha }}{2}} \right) = 0\]
$
\Rightarrow \sin \left( {\dfrac{{\theta - \alpha }}{2}} \right) = 0 \\
\Rightarrow \left( {\dfrac{{\theta - \alpha }}{2}} \right) = n\pi {\text{ \{ from eq}}{\text{.3\} }} \\
{\text{where }}n = {\text{integer}} \\
$
Therefore, $\left( {\dfrac{{\theta - \alpha }}{2}} \right)$ is any multiple of $\pi $. Statement 2
Hence, from Statement 1 and Statement 2, option 1 is correct.
Note: - Whenever you get this type of question the key concept to solve this is to learn all the trigonometric identities. And also you must have to learn the various conditions of trigonometric angles like $\sin \theta ,\cos \theta $ etc. when equating them to zero. Remember $\sin (a) - \sin (b) = 2\cos \left( {\dfrac{{a + b}}{2}} \right).\sin \left( {\dfrac{{a - b}}{2}} \right)$ these formulas for easy solving.
Complete step-by-step solution -
Given: $\sin \theta = \sin \alpha $ eq.1
$ \Rightarrow \sin \theta - \sin \alpha {\text{ = 0}}$
We know, from trigonometric identities
$\sin (a) - \sin (b) = 2\cos \left( {\dfrac{{a + b}}{2}} \right).\sin \left( {\dfrac{{a - b}}{2}} \right)$
On applying above formula on eq.1 we get
$
\Rightarrow \sin \theta - \sin \alpha {\text{ = 0}} \\
\Rightarrow 2\cos \left( {\dfrac{{\theta + \alpha }}{2}} \right).\sin \left( {\dfrac{{\theta - \alpha }}{2}} \right) = 0{\text{ eq}}{\text{.2}} \\
$
We know,
If $\sin \theta = 0$
Then, $\theta = n\pi $ eq.3
\[{\text{where }}n = {\text{integer}}\]
And if $\cos \theta = 0$
Then, $\theta = \dfrac{{(2n + 1)\pi }}{2}$ eq.4
\[{\text{where }}n = {\text{integer}}\]
Now, using eq.3 and eq.4 we can write eq.2 as
$
\Rightarrow 2\cos \left( {\dfrac{{\theta + \alpha }}{2}} \right).\sin \left( {\dfrac{{\theta - \alpha }}{2}} \right) = 0 \\
\Rightarrow \cos \left( {\dfrac{{\theta + \alpha }}{2}} \right) = 0{\text{ or }}\sin \left( {\dfrac{{\theta - \alpha }}{2}} \right) = 0 \\
$
On solving these two conditions separately we get
$
\Rightarrow \cos \left( {\dfrac{{\theta + \alpha }}{2}} \right) = 0{\text{ }} \\
\Rightarrow \left( {\dfrac{{\theta + \alpha }}{2}} \right) = \dfrac{{(2n + 1)\pi }}{2}{\text{ \{ from eq}}{\text{.4\} }} \\
{\text{where }}n = {\text{integer}} \\
$
Therefore, \[\left( {\dfrac{{\theta + \alpha }}{2}} \right)\] is the odd multiple of $\dfrac{\pi }{2}$. Statement 1
Now, consider \[\sin \left( {\dfrac{{\theta - \alpha }}{2}} \right) = 0\]
$
\Rightarrow \sin \left( {\dfrac{{\theta - \alpha }}{2}} \right) = 0 \\
\Rightarrow \left( {\dfrac{{\theta - \alpha }}{2}} \right) = n\pi {\text{ \{ from eq}}{\text{.3\} }} \\
{\text{where }}n = {\text{integer}} \\
$
Therefore, $\left( {\dfrac{{\theta - \alpha }}{2}} \right)$ is any multiple of $\pi $. Statement 2
Hence, from Statement 1 and Statement 2, option 1 is correct.
Note: - Whenever you get this type of question the key concept to solve this is to learn all the trigonometric identities. And also you must have to learn the various conditions of trigonometric angles like $\sin \theta ,\cos \theta $ etc. when equating them to zero. Remember $\sin (a) - \sin (b) = 2\cos \left( {\dfrac{{a + b}}{2}} \right).\sin \left( {\dfrac{{a - b}}{2}} \right)$ these formulas for easy solving.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

