
If we have \[\cos A + \cos C = 4{\sin ^2}\dfrac{1}{{\text{2}}}B\] , the sides $a,b,c$ of the triangle are in G.P.
(A) True
(B) False
Answer
596.4k+ views
Hint: If the sides $a,b,c$ of the triangle are in G.P (Geometric Progression) then we have to prove that \[{b^2} = ac\].
Complete step-by-step solution -
Given that \[\cos A + \cos C = 4{\sin ^2}\dfrac{1}{{\text{2}}}B\]
We know that \[\cos A + \cos C = 2\cos \left( {\dfrac{{A + C}}{2}} \right)\cos \left( {\dfrac{{A - C}}{2}} \right)\]
So, the given equation becomes as
\[2\cos \left( {\dfrac{{A + C}}{2}} \right)\cos \left( {\dfrac{{A - C}}{2}} \right) = 4{\sin ^2}\dfrac{1}{2}B\]
Since sum of the angles in a triangle equal is to
i.e. $
A + B + C = \pi \\
A + C = \pi - B \\
$
So, the equation becomes as
\[2\cos \left( {\dfrac{{\pi - B}}{2}} \right)\cos \left( {\dfrac{{A - C}}{2}} \right) = 4{\sin ^2}\dfrac{1}{2}B\]
\[
2\cos \left( {\dfrac{\pi }{2} - \dfrac{B}{2}} \right)\cos \left( {\dfrac{{A - C}}{2}} \right) = 4{\sin ^2}\dfrac{1}{2}B \\
\\
2\sin \left( {\dfrac{B}{2}} \right)\cos \left( {\dfrac{{A - C}}{2}} \right) = 4{\sin ^2}\dfrac{1}{2}B \\
\]
Cancelling \[\sin \dfrac{B}{2}\] on both sides we get
\[\cos \left( {\dfrac{{A - C}}{2}} \right) = 2\sin \dfrac{1}{2}B\]
By Mollweide Rule,
\[\dfrac{{\cos \left( {\dfrac{{A - C}}{2}} \right)}}{{\sin \left( {\dfrac{1}{2}B} \right)}} = \dfrac{{a + c}}{b}\]
So, the equation becomes as
\[
\dfrac{{a + c}}{b} = 2 \\
a + c = 2b \\
\]
Thus, the sides \[a,b,c\] of the triangle are not in G.P (Geometric Progression).
Hence, the answer is False .
Note: Here the sides \[a,b,c\] of the triangle are in A.P (Arithmetic Progression). Since the sides are in \[a + c = 2b\]. We need to remember the trigonometric identities which are very essential to solve this problem.
Complete step-by-step solution -
Given that \[\cos A + \cos C = 4{\sin ^2}\dfrac{1}{{\text{2}}}B\]
We know that \[\cos A + \cos C = 2\cos \left( {\dfrac{{A + C}}{2}} \right)\cos \left( {\dfrac{{A - C}}{2}} \right)\]
So, the given equation becomes as
\[2\cos \left( {\dfrac{{A + C}}{2}} \right)\cos \left( {\dfrac{{A - C}}{2}} \right) = 4{\sin ^2}\dfrac{1}{2}B\]
Since sum of the angles in a triangle equal is to
i.e. $
A + B + C = \pi \\
A + C = \pi - B \\
$
So, the equation becomes as
\[2\cos \left( {\dfrac{{\pi - B}}{2}} \right)\cos \left( {\dfrac{{A - C}}{2}} \right) = 4{\sin ^2}\dfrac{1}{2}B\]
\[
2\cos \left( {\dfrac{\pi }{2} - \dfrac{B}{2}} \right)\cos \left( {\dfrac{{A - C}}{2}} \right) = 4{\sin ^2}\dfrac{1}{2}B \\
\\
2\sin \left( {\dfrac{B}{2}} \right)\cos \left( {\dfrac{{A - C}}{2}} \right) = 4{\sin ^2}\dfrac{1}{2}B \\
\]
Cancelling \[\sin \dfrac{B}{2}\] on both sides we get
\[\cos \left( {\dfrac{{A - C}}{2}} \right) = 2\sin \dfrac{1}{2}B\]
By Mollweide Rule,
\[\dfrac{{\cos \left( {\dfrac{{A - C}}{2}} \right)}}{{\sin \left( {\dfrac{1}{2}B} \right)}} = \dfrac{{a + c}}{b}\]
So, the equation becomes as
\[
\dfrac{{a + c}}{b} = 2 \\
a + c = 2b \\
\]
Thus, the sides \[a,b,c\] of the triangle are not in G.P (Geometric Progression).
Hence, the answer is False .
Note: Here the sides \[a,b,c\] of the triangle are in A.P (Arithmetic Progression). Since the sides are in \[a + c = 2b\]. We need to remember the trigonometric identities which are very essential to solve this problem.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

