
If we have \[{b_{xy}} = 0.4\] and \[{b_{yx}} = 1.6\], then the angle \[\theta \] between two regression lines is
A. \[{\tan ^{ - 1}}(0.09)\]
B. \[{\tan ^{ - 1}}(0.18)\]
C. \[{\tan ^{ - 1}}(0.36)\]
D. \[{\tan ^{ - 1}}(0.72)\]
Answer
570.9k+ views
Hint: We know that, A regression line is a straight line that describes how a response variable y changes as an explanatory variable x changes. We often use a regression line to predict the value of y for a given value of x.
At first, we will find the slope of the lines by using the geometric means of the coefficient of regression formula, we will get the final answer.
Formula used: Using the formulas
\[{m_1} = \dfrac{1}{r}\dfrac{{{\sigma _y}}}{{{\sigma _x}}}\] and \[{m_2} = r\dfrac{{{\sigma _y}}}{{{\sigma _x}}}\]
\[\tan \theta = \pm \dfrac{{{m_2} - {m_1}}}{{1 + {m_1}{m_2}}}\]
Complete step-by-step solution:
It is given that; \[{b_{xy}} = 0.4\] and \[{b_{yx}} = 1.6\].
We have to find the value of angle \[\theta \] between two regression lines.
We know that, the geometric means of the coefficient of regression \[r = \sqrt {{b_{xy}} \times {b_{yx}}} \]
Substitute the values we get,
$\Rightarrow$\[r = \sqrt {1.6 \times 0.4} \]
Simplifying we get,
$\Rightarrow$\[r = \sqrt {0.64} = 0.8\]
Again, we know that, \[{b_{yx}} = r\dfrac{{{\sigma _y}}}{{{\sigma _x}}}\]
Simplifying we get,
$\Rightarrow$\[\dfrac{{{\sigma _y}}}{{{\sigma _x}}} = \dfrac{{{b_{yx}}}}{r}\]
Substitute the values we get,
$\Rightarrow$\[\dfrac{{{\sigma _y}}}{{{\sigma _x}}} = \dfrac{{1.6}}{{0.8}} = 2\]
We know that, the slope of first line \[{m_1} = \dfrac{1}{r}\dfrac{{{\sigma _y}}}{{{\sigma _x}}}\]
Substitute the values we get,
$\Rightarrow$\[{m_1} = \dfrac{1}{{0.8}}(2) = 2.5\]
Also, the slope of second line \[{m_2} = r\dfrac{{{\sigma _y}}}{{{\sigma _x}}}\]
Substitute the values we get,
$\Rightarrow$\[{m_2} = 0.8 \times 2 = 1.6\]
We know that, if the slope of two lines are \[{m_1}\]and \[{m_2}\] respectively, then the angle between them is,
$\Rightarrow$\[\theta = \dfrac{{{m_1} - {m_2}}}{{1 + {m_1}{m_2}}}\]
Substitute the value of \[{m_1}\]and \[{m_2}\] in the above formula we get,
$\Rightarrow$\[\tan \theta = \dfrac{{2.5 - 1.6}}{{1 + (2.5)(1.6)}}\]
Simplifying the values, we get,
$\Rightarrow$\[\tan \theta = \dfrac{{0.9}}{{1 + 4}}\]
Simplifying the values again, we get,
$\Rightarrow$\[\tan \theta = 0.18\]
So, \[\theta = {\tan ^{ - 1}}(0.18)\]
Hence, the angle \[\theta \] between two regression lines is \[\theta = {\tan ^{ - 1}}(0.18)\].
Hence, the correct option is B) \[{\tan ^{ - 1}}(0.18)\].
Note: Regression coefficient of y on x is \[{b_{yx}} = r\dfrac{{{\sigma _y}}}{{{\sigma _x}}}\]
Regression coefficient of x on y is \[{b_{xy}} = r\dfrac{{{\sigma _x}}}{{{\sigma _y}}}\]
\[{m_1}\] be the slope of the line of regression of y on x =\[{b_{yx}} = r\dfrac{{{\sigma _y}}}{{{\sigma _x}}}\]
\[{m_2}\] be the slope of the line of regression of x on y =\[\dfrac{1}{{{b_{xy}}}} = \dfrac{1}{r}.\dfrac{{{\sigma _y}}}{{{\sigma _x}}}\]
So, we get,
\[\tan \theta = \pm \dfrac{{{m_2} - {m_1}}}{{1 + {m_1}{m_2}}} = \pm \dfrac{{(1 - {r^2}){\sigma _x}{\sigma _y}}}{{r({\sigma _x}^2 + {\sigma _y}^2)}}\]
At first, we will find the slope of the lines by using the geometric means of the coefficient of regression formula, we will get the final answer.
Formula used: Using the formulas
\[{m_1} = \dfrac{1}{r}\dfrac{{{\sigma _y}}}{{{\sigma _x}}}\] and \[{m_2} = r\dfrac{{{\sigma _y}}}{{{\sigma _x}}}\]
\[\tan \theta = \pm \dfrac{{{m_2} - {m_1}}}{{1 + {m_1}{m_2}}}\]
Complete step-by-step solution:
It is given that; \[{b_{xy}} = 0.4\] and \[{b_{yx}} = 1.6\].
We have to find the value of angle \[\theta \] between two regression lines.
We know that, the geometric means of the coefficient of regression \[r = \sqrt {{b_{xy}} \times {b_{yx}}} \]
Substitute the values we get,
$\Rightarrow$\[r = \sqrt {1.6 \times 0.4} \]
Simplifying we get,
$\Rightarrow$\[r = \sqrt {0.64} = 0.8\]
Again, we know that, \[{b_{yx}} = r\dfrac{{{\sigma _y}}}{{{\sigma _x}}}\]
Simplifying we get,
$\Rightarrow$\[\dfrac{{{\sigma _y}}}{{{\sigma _x}}} = \dfrac{{{b_{yx}}}}{r}\]
Substitute the values we get,
$\Rightarrow$\[\dfrac{{{\sigma _y}}}{{{\sigma _x}}} = \dfrac{{1.6}}{{0.8}} = 2\]
We know that, the slope of first line \[{m_1} = \dfrac{1}{r}\dfrac{{{\sigma _y}}}{{{\sigma _x}}}\]
Substitute the values we get,
$\Rightarrow$\[{m_1} = \dfrac{1}{{0.8}}(2) = 2.5\]
Also, the slope of second line \[{m_2} = r\dfrac{{{\sigma _y}}}{{{\sigma _x}}}\]
Substitute the values we get,
$\Rightarrow$\[{m_2} = 0.8 \times 2 = 1.6\]
We know that, if the slope of two lines are \[{m_1}\]and \[{m_2}\] respectively, then the angle between them is,
$\Rightarrow$\[\theta = \dfrac{{{m_1} - {m_2}}}{{1 + {m_1}{m_2}}}\]
Substitute the value of \[{m_1}\]and \[{m_2}\] in the above formula we get,
$\Rightarrow$\[\tan \theta = \dfrac{{2.5 - 1.6}}{{1 + (2.5)(1.6)}}\]
Simplifying the values, we get,
$\Rightarrow$\[\tan \theta = \dfrac{{0.9}}{{1 + 4}}\]
Simplifying the values again, we get,
$\Rightarrow$\[\tan \theta = 0.18\]
So, \[\theta = {\tan ^{ - 1}}(0.18)\]
Hence, the angle \[\theta \] between two regression lines is \[\theta = {\tan ^{ - 1}}(0.18)\].
Hence, the correct option is B) \[{\tan ^{ - 1}}(0.18)\].
Note: Regression coefficient of y on x is \[{b_{yx}} = r\dfrac{{{\sigma _y}}}{{{\sigma _x}}}\]
Regression coefficient of x on y is \[{b_{xy}} = r\dfrac{{{\sigma _x}}}{{{\sigma _y}}}\]
\[{m_1}\] be the slope of the line of regression of y on x =\[{b_{yx}} = r\dfrac{{{\sigma _y}}}{{{\sigma _x}}}\]
\[{m_2}\] be the slope of the line of regression of x on y =\[\dfrac{1}{{{b_{xy}}}} = \dfrac{1}{r}.\dfrac{{{\sigma _y}}}{{{\sigma _x}}}\]
So, we get,
\[\tan \theta = \pm \dfrac{{{m_2} - {m_1}}}{{1 + {m_1}{m_2}}} = \pm \dfrac{{(1 - {r^2}){\sigma _x}{\sigma _y}}}{{r({\sigma _x}^2 + {\sigma _y}^2)}}\]
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

