
If we have an inequality as \[\sin x+\sin y\ge \cos \alpha \cos x,\forall x\in R\], then \[\sin y+ \cos \alpha \] is equal to,
A. -1
B. 1
C. 0
D. 2
Answer
537k+ views
Hint: We will be using the concepts of trigonometric functions to solve the problem. We are going to rearrange the above inequality and then we will find the greatest value of the trigonometric expression. From this, we will get the value of $\sin y\And \cos \alpha $ and after that we will put those values in that expression.
Complete step-by-step solution
Now, we have been given that \[\sin x+\sin y\ge \cos \alpha \cos x,\forall x\in R\]. Since, it is true for all \[x\in R\].
We are going to subtract $\sin x$ on both the sides of the above inequality and we get,
$\begin{align}
& \Rightarrow \sin x-\sin x+\sin y\ge \cos \alpha \cos x-\sin x \\
& \Rightarrow \sin y\ge \cos \alpha \cos x-\sin x \\
\end{align}$
If we find the value of $\sin y$ in such a way so that its value is always greater than $\cos \alpha \cos x-\sin x$ then no matter what x can be the above inequality holds always true so we are going to find the maximum value of $\cos \alpha \cos x-\sin x$. For that we are going to multiply and divide the R.H.S of the above inequality by $\sqrt{1+{{\cos }^{2}}\alpha }$ we get,
$\Rightarrow \sin y\ge \sqrt{1+{{\cos }^{2}}\alpha }\left( \dfrac{\cos \alpha \cos x}{\sqrt{1+{{\cos }^{2}}\alpha }}-\dfrac{\sin x}{\sqrt{1+{{\cos }^{2}}\alpha }} \right)$ ……………..(1)
Let us assume $\dfrac{1}{\sqrt{1+{{\cos }^{2}}\alpha }}=\sin \theta $ then we are going to use the property of $\cos \theta \And \sin \theta $ to find the value of $\cos \theta $ which is equal to:
$\cos \theta =\sqrt{1-{{\sin }^{2}}\theta }$
Substituting the value of $\sin \theta $ in the above equation we get,
$\begin{align}
& \Rightarrow \cos \theta =\sqrt{1-\dfrac{1}{1+{{\cos }^{2}}\alpha }} \\
& \Rightarrow \cos \theta =\sqrt{\dfrac{1+{{\cos }^{2}}\alpha -1}{1+{{\cos }^{2}}\alpha }} \\
& \Rightarrow \cos \theta =\sqrt{\dfrac{{{\cos }^{2}}\alpha }{1+{{\cos }^{2}}\alpha }} \\
\end{align}$
$\Rightarrow \cos \theta =\dfrac{\cos \alpha }{\sqrt{1+{{\cos }^{2}}\alpha }}$
So, substituting the above values of $\dfrac{\cos \alpha }{\sqrt{1+{{\cos }^{2}}\alpha }}\And \dfrac{1}{\sqrt{1+{{\cos }^{2}}\alpha }}$ as $\cos \theta \And \sin \theta $ in (1) we get,
$\Rightarrow \sin y\ge \sqrt{1+{{\cos }^{2}}\alpha }\left( \cos \theta \cos x-\sin \theta \sin x \right)$
We know that $\cos \left( A+B \right)=\cos A\cos B-\sin A\sin B$ so using this trigonometric relation in the above problem we get,
$\Rightarrow \sin y\ge \sqrt{1+{{\cos }^{2}}\alpha }\left( \cos \left( \theta +x \right) \right)$
The maximum value of the R.H.S is $\sqrt{1+{{\cos }^{2}}\alpha }$ then the above inequality will look like:
$\Rightarrow \sin y\ge \sqrt{1+{{\cos }^{2}}\alpha }$
Now, the maximum value which $\sin y$ can take is 1 and we are taking the equality sign so $\sqrt{1+{{\cos }^{2}}\alpha }$ also equals 1.
And $\sqrt{1+{{\cos }^{2}}\alpha }=1$ when $\cos \alpha =0$. Hence, we got the value of $\sin y=1\And \cos \alpha =0$.
Now, in the above problem we are asked to find the value of the expression $\sin y+\cos \alpha $. Substituting the values of $\sin y=1\And \cos \alpha =0$ in this expression we get,
$\begin{align}
& \Rightarrow \sin y+\cos \alpha \\
& =1+0 \\
& =1 \\
\end{align}$
Hence, the correct option is (b).
Note: In the above solution, we have found the maximum value of $\cos \alpha \cos x-\sin x$ by using the formula for the greatest value of $a\cos x\pm b\sin x$ which is equal to $\sqrt{{{a}^{2}}+{{b}^{2}}}$. Now, on comparing “a” and “b” values with $\cos \alpha \And -1$ respectively then the maximum value of $\cos \alpha \cos x-\sin x$ is equal to:
$\sqrt{1+{{\cos }^{2}}\alpha }$
Complete step-by-step solution
Now, we have been given that \[\sin x+\sin y\ge \cos \alpha \cos x,\forall x\in R\]. Since, it is true for all \[x\in R\].
We are going to subtract $\sin x$ on both the sides of the above inequality and we get,
$\begin{align}
& \Rightarrow \sin x-\sin x+\sin y\ge \cos \alpha \cos x-\sin x \\
& \Rightarrow \sin y\ge \cos \alpha \cos x-\sin x \\
\end{align}$
If we find the value of $\sin y$ in such a way so that its value is always greater than $\cos \alpha \cos x-\sin x$ then no matter what x can be the above inequality holds always true so we are going to find the maximum value of $\cos \alpha \cos x-\sin x$. For that we are going to multiply and divide the R.H.S of the above inequality by $\sqrt{1+{{\cos }^{2}}\alpha }$ we get,
$\Rightarrow \sin y\ge \sqrt{1+{{\cos }^{2}}\alpha }\left( \dfrac{\cos \alpha \cos x}{\sqrt{1+{{\cos }^{2}}\alpha }}-\dfrac{\sin x}{\sqrt{1+{{\cos }^{2}}\alpha }} \right)$ ……………..(1)
Let us assume $\dfrac{1}{\sqrt{1+{{\cos }^{2}}\alpha }}=\sin \theta $ then we are going to use the property of $\cos \theta \And \sin \theta $ to find the value of $\cos \theta $ which is equal to:
$\cos \theta =\sqrt{1-{{\sin }^{2}}\theta }$
Substituting the value of $\sin \theta $ in the above equation we get,
$\begin{align}
& \Rightarrow \cos \theta =\sqrt{1-\dfrac{1}{1+{{\cos }^{2}}\alpha }} \\
& \Rightarrow \cos \theta =\sqrt{\dfrac{1+{{\cos }^{2}}\alpha -1}{1+{{\cos }^{2}}\alpha }} \\
& \Rightarrow \cos \theta =\sqrt{\dfrac{{{\cos }^{2}}\alpha }{1+{{\cos }^{2}}\alpha }} \\
\end{align}$
$\Rightarrow \cos \theta =\dfrac{\cos \alpha }{\sqrt{1+{{\cos }^{2}}\alpha }}$
So, substituting the above values of $\dfrac{\cos \alpha }{\sqrt{1+{{\cos }^{2}}\alpha }}\And \dfrac{1}{\sqrt{1+{{\cos }^{2}}\alpha }}$ as $\cos \theta \And \sin \theta $ in (1) we get,
$\Rightarrow \sin y\ge \sqrt{1+{{\cos }^{2}}\alpha }\left( \cos \theta \cos x-\sin \theta \sin x \right)$
We know that $\cos \left( A+B \right)=\cos A\cos B-\sin A\sin B$ so using this trigonometric relation in the above problem we get,
$\Rightarrow \sin y\ge \sqrt{1+{{\cos }^{2}}\alpha }\left( \cos \left( \theta +x \right) \right)$
The maximum value of the R.H.S is $\sqrt{1+{{\cos }^{2}}\alpha }$ then the above inequality will look like:
$\Rightarrow \sin y\ge \sqrt{1+{{\cos }^{2}}\alpha }$
Now, the maximum value which $\sin y$ can take is 1 and we are taking the equality sign so $\sqrt{1+{{\cos }^{2}}\alpha }$ also equals 1.
And $\sqrt{1+{{\cos }^{2}}\alpha }=1$ when $\cos \alpha =0$. Hence, we got the value of $\sin y=1\And \cos \alpha =0$.
Now, in the above problem we are asked to find the value of the expression $\sin y+\cos \alpha $. Substituting the values of $\sin y=1\And \cos \alpha =0$ in this expression we get,
$\begin{align}
& \Rightarrow \sin y+\cos \alpha \\
& =1+0 \\
& =1 \\
\end{align}$
Hence, the correct option is (b).
Note: In the above solution, we have found the maximum value of $\cos \alpha \cos x-\sin x$ by using the formula for the greatest value of $a\cos x\pm b\sin x$ which is equal to $\sqrt{{{a}^{2}}+{{b}^{2}}}$. Now, on comparing “a” and “b” values with $\cos \alpha \And -1$ respectively then the maximum value of $\cos \alpha \cos x-\sin x$ is equal to:
$\sqrt{1+{{\cos }^{2}}\alpha }$
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Explain zero factorial class 11 maths CBSE

An example of chemosynthetic bacteria is A E coli B class 11 biology CBSE

State the laws of reflection of light

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

Which one of the following is not a method of soil class 11 biology CBSE

