
If we have an expression as \[{{y}^{3}}+{{x}^{3}}-3axy=0\], then find the second derivative \[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}\].
Answer
483.9k+ views
Hint: As the given function is an implicit function, what we will do is we will differentiate the given function with respect to x and then we will collect all \[\dfrac{dy}{dx}\] to one side and solve it and again we will differentiate \[\dfrac{dy}{dx}\] again to obtain \[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}\].
Complete step-by-step solution:
Here, the given function is implicit function\[{{y}^{3}}+{{x}^{3}}-3axy=0\].
By differentiating it with respect to ’x’ we will have,
\[3{{x}^{2}}+3{{y}^{2}}\dfrac{dy}{dx}-3a\left[ y\left( 1 \right)+x\left( \dfrac{dy}{dx} \right) \right]=0\] where, we got the equation using the multiplication rule, which is \[\dfrac{d}{dx}\left( uv \right)=\dfrac{du}{dx}\left( v \right)+\dfrac{dv}{dx}\left( u \right)\].
On further solving the equation, we get
\[3{{x}^{2}}+3{{y}^{2}}\dfrac{dy}{dx}-3ay-3ax\dfrac{dy}{dx}=0\]
On simplifying, we get
\[{{x}^{2}}+{{y}^{2}}\dfrac{dy}{dx}-ay-ax\dfrac{dy}{dx}=0\]
Getting the \[\dfrac{dy}{dx}\] terms together, we get
\[\dfrac{dy}{dx}\left( {{y}^{2}}-ax \right)=ay-{{x}^{2}}\]
\[\dfrac{dy}{dx}=\dfrac{ay-{{x}^{2}}}{{{y}^{2}}-ax}\]
So, we have obtained the \[\dfrac{dy}{dx}\] , which is equals to \[\dfrac{dy}{dx}=\dfrac{ay-{{x}^{2}}}{{{y}^{2}}-ax}\].
Now, let us differentiate \[\dfrac{dy}{dx}\] again to find \[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}\].
\[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{\left( {{y}^{2}}-ax \right)\dfrac{d}{dx}\left( ay-{{x}^{2}} \right)-\left( ay-{{x}^{2}} \right)\dfrac{d}{dx}\left( {{y}^{2}}-ax \right)}{{{\left( {{y}^{2}}-ax \right)}^{2}}}\]
We obtained the above equation using division rule of differentiation, which is \[\dfrac{d}{dx}\left( \dfrac{u}{v} \right)=\dfrac{v\dfrac{du}{dx}-u\dfrac{dv}{dx}}{{{v}^{2}}}\], where $u=ay-{{x}^{2}}$ and $v={{y}^{2}}-ax$ .
On further solving we will have:
\[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{\left( {{y}^{2}}-ax \right)\left( a\dfrac{dy}{dx}-2x \right)-\left( ay-{{x}^{2}} \right)\left( 2y\dfrac{dy}{dx}-a \right)}{{{\left( {{y}^{2}}-ax \right)}^{2}}}\].
Substituting \[\dfrac{dy}{dx}=\dfrac{ay-{{x}^{2}}}{{{y}^{2}}-ax}\]in the above equation, we have:
\[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{\left( {{y}^{2}}-ax \right)\left( a\left( \dfrac{ay-{{x}^{2}}}{{{y}^{2}}-ax} \right)-2x \right)-\left( ay-{{x}^{2}} \right)\left( 2y\left( \dfrac{ay-{{x}^{2}}}{{{y}^{2}}-ax} \right)-a \right)}{{{\left( {{y}^{2}}-ax \right)}^{2}}}\]
By expanding the above equation we have:
\[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{\left( {{y}^{2}}-ax \right)\left( {{a}^{2}}y-a{{x}^{2}}-2x{{y}^{2}}+2a{{x}^{2}} \right)-\left( ay-{{x}^{2}} \right)\left( 2a{{y}^{2}}-2y{{x}^{2}}-a{{y}^{2}}+{{a}^{2}}x \right)}{{{\left( {{y}^{2}}-ax \right)}^{3}}}\]
On simplifying, we get
\[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{\left( {{y}^{2}}-ax \right)\left( {{a}^{2}}y+a{{x}^{2}}-2x{{y}^{2}}\right)-\left( ay-{{x}^{2}} \right)\left( a{{y}^{2}}-2y{{x}^{2}}+{{a}^{2}}x \right)}{{{\left( {{y}^{2}}-ax \right)}^{3}}}\]
\[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{{{a}^{2}}{{y}^{3}}-2x{{y}^{4}}+a{{x}^{2}}{{y}^{2}}-{{a}^{3}}xy+2a{{x}^{2}}{{y}^{2}}-{{a}^{2}}{{x}^{3}}-\left( {{a}^{2}}{{y}^{3}}-2a{{x}^{2}}{{y}^{2}}+{{a}^{3}}xy-a{{x}^{2}}{{y}^{2}}+2{{x}^{4}}y-{{a}^{2}}{{x}^{3}} \right)}{{{\left( {{y}^{2}}-ax \right)}^{3}}}\]
Upon making the required cancellations, we have;
\[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{-2{{a}^{3}}xy-2{{x}^{4}}y-2x{{y}^{4}}+6a{{x}^{2}}{{y}^{2}}}{{{\left( {{y}^{2}}-ax \right)}^{3}}}\]
\[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{-2{{a}^{3}}xy-2xy\left( {{x}^{3}}+{{y}^{3}}-3axy \right)}{{{\left( {{y}^{2}}-ax \right)}^{3}}}\].
Since \[{{y}^{3}}+{{x}^{3}}-3axy=0\], we have:
\[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{-2{{a}^{3}}xy}{{{\left( {{y}^{2}}-ax \right)}^{3}}}\]
So, \[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{2{{a}^{3}}xy}{{{\left( ax-{{y}^{2}} \right)}^{3}}}\].
Hence \[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{2{{a}^{3}}xy}{{{\left( ax-{{y}^{2}} \right)}^{3}}}\] is the answer.
Note: While finding differentiation of an implicit function, firstly remember the product rule \[\dfrac{d}{dx}\left( uv \right)=\dfrac{du}{dx}\left( v \right)+\dfrac{dv}{dx}\left( u \right)\] and division rule \[\dfrac{d}{dx}\left( \dfrac{u}{v} \right)=\dfrac{v\dfrac{du}{dx}-u\dfrac{dv}{dx}}{{{v}^{2}}}\] are important while doing differentiation. It is suggested that first to simplify only \[\dfrac{dy}{dx}\]and then differentiate \[\dfrac{dy}{dx}\]using division rule as this will help you in solving question with less error. The question is easy but there are chances of making calculation errors, so try to avoid making calculation mistakes.
Complete step-by-step solution:
Here, the given function is implicit function\[{{y}^{3}}+{{x}^{3}}-3axy=0\].
By differentiating it with respect to ’x’ we will have,
\[3{{x}^{2}}+3{{y}^{2}}\dfrac{dy}{dx}-3a\left[ y\left( 1 \right)+x\left( \dfrac{dy}{dx} \right) \right]=0\] where, we got the equation using the multiplication rule, which is \[\dfrac{d}{dx}\left( uv \right)=\dfrac{du}{dx}\left( v \right)+\dfrac{dv}{dx}\left( u \right)\].
On further solving the equation, we get
\[3{{x}^{2}}+3{{y}^{2}}\dfrac{dy}{dx}-3ay-3ax\dfrac{dy}{dx}=0\]
On simplifying, we get
\[{{x}^{2}}+{{y}^{2}}\dfrac{dy}{dx}-ay-ax\dfrac{dy}{dx}=0\]
Getting the \[\dfrac{dy}{dx}\] terms together, we get
\[\dfrac{dy}{dx}\left( {{y}^{2}}-ax \right)=ay-{{x}^{2}}\]
\[\dfrac{dy}{dx}=\dfrac{ay-{{x}^{2}}}{{{y}^{2}}-ax}\]
So, we have obtained the \[\dfrac{dy}{dx}\] , which is equals to \[\dfrac{dy}{dx}=\dfrac{ay-{{x}^{2}}}{{{y}^{2}}-ax}\].
Now, let us differentiate \[\dfrac{dy}{dx}\] again to find \[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}\].
\[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{\left( {{y}^{2}}-ax \right)\dfrac{d}{dx}\left( ay-{{x}^{2}} \right)-\left( ay-{{x}^{2}} \right)\dfrac{d}{dx}\left( {{y}^{2}}-ax \right)}{{{\left( {{y}^{2}}-ax \right)}^{2}}}\]
We obtained the above equation using division rule of differentiation, which is \[\dfrac{d}{dx}\left( \dfrac{u}{v} \right)=\dfrac{v\dfrac{du}{dx}-u\dfrac{dv}{dx}}{{{v}^{2}}}\], where $u=ay-{{x}^{2}}$ and $v={{y}^{2}}-ax$ .
On further solving we will have:
\[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{\left( {{y}^{2}}-ax \right)\left( a\dfrac{dy}{dx}-2x \right)-\left( ay-{{x}^{2}} \right)\left( 2y\dfrac{dy}{dx}-a \right)}{{{\left( {{y}^{2}}-ax \right)}^{2}}}\].
Substituting \[\dfrac{dy}{dx}=\dfrac{ay-{{x}^{2}}}{{{y}^{2}}-ax}\]in the above equation, we have:
\[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{\left( {{y}^{2}}-ax \right)\left( a\left( \dfrac{ay-{{x}^{2}}}{{{y}^{2}}-ax} \right)-2x \right)-\left( ay-{{x}^{2}} \right)\left( 2y\left( \dfrac{ay-{{x}^{2}}}{{{y}^{2}}-ax} \right)-a \right)}{{{\left( {{y}^{2}}-ax \right)}^{2}}}\]
By expanding the above equation we have:
\[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{\left( {{y}^{2}}-ax \right)\left( {{a}^{2}}y-a{{x}^{2}}-2x{{y}^{2}}+2a{{x}^{2}} \right)-\left( ay-{{x}^{2}} \right)\left( 2a{{y}^{2}}-2y{{x}^{2}}-a{{y}^{2}}+{{a}^{2}}x \right)}{{{\left( {{y}^{2}}-ax \right)}^{3}}}\]
On simplifying, we get
\[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{\left( {{y}^{2}}-ax \right)\left( {{a}^{2}}y+a{{x}^{2}}-2x{{y}^{2}}\right)-\left( ay-{{x}^{2}} \right)\left( a{{y}^{2}}-2y{{x}^{2}}+{{a}^{2}}x \right)}{{{\left( {{y}^{2}}-ax \right)}^{3}}}\]
\[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{{{a}^{2}}{{y}^{3}}-2x{{y}^{4}}+a{{x}^{2}}{{y}^{2}}-{{a}^{3}}xy+2a{{x}^{2}}{{y}^{2}}-{{a}^{2}}{{x}^{3}}-\left( {{a}^{2}}{{y}^{3}}-2a{{x}^{2}}{{y}^{2}}+{{a}^{3}}xy-a{{x}^{2}}{{y}^{2}}+2{{x}^{4}}y-{{a}^{2}}{{x}^{3}} \right)}{{{\left( {{y}^{2}}-ax \right)}^{3}}}\]
Upon making the required cancellations, we have;
\[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{-2{{a}^{3}}xy-2{{x}^{4}}y-2x{{y}^{4}}+6a{{x}^{2}}{{y}^{2}}}{{{\left( {{y}^{2}}-ax \right)}^{3}}}\]
\[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{-2{{a}^{3}}xy-2xy\left( {{x}^{3}}+{{y}^{3}}-3axy \right)}{{{\left( {{y}^{2}}-ax \right)}^{3}}}\].
Since \[{{y}^{3}}+{{x}^{3}}-3axy=0\], we have:
\[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{-2{{a}^{3}}xy}{{{\left( {{y}^{2}}-ax \right)}^{3}}}\]
So, \[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{2{{a}^{3}}xy}{{{\left( ax-{{y}^{2}} \right)}^{3}}}\].
Hence \[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{2{{a}^{3}}xy}{{{\left( ax-{{y}^{2}} \right)}^{3}}}\] is the answer.
Note: While finding differentiation of an implicit function, firstly remember the product rule \[\dfrac{d}{dx}\left( uv \right)=\dfrac{du}{dx}\left( v \right)+\dfrac{dv}{dx}\left( u \right)\] and division rule \[\dfrac{d}{dx}\left( \dfrac{u}{v} \right)=\dfrac{v\dfrac{du}{dx}-u\dfrac{dv}{dx}}{{{v}^{2}}}\] are important while doing differentiation. It is suggested that first to simplify only \[\dfrac{dy}{dx}\]and then differentiate \[\dfrac{dy}{dx}\]using division rule as this will help you in solving question with less error. The question is easy but there are chances of making calculation errors, so try to avoid making calculation mistakes.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Economics: Engaging Questions & Answers for Success

Trending doubts
Draw a labelled sketch of the human eye class 12 physics CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Which one of the following is a true fish A Jellyfish class 12 biology CBSE

Why is the cell called the structural and functional class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Write the difference between solid liquid and gas class 12 chemistry CBSE
