
If we have an expression as \[{{y}^{3}}+{{x}^{3}}-3axy=0\], then find the second derivative \[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}\].
Answer
555.3k+ views
Hint: As the given function is an implicit function, what we will do is we will differentiate the given function with respect to x and then we will collect all \[\dfrac{dy}{dx}\] to one side and solve it and again we will differentiate \[\dfrac{dy}{dx}\] again to obtain \[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}\].
Complete step-by-step solution:
Here, the given function is implicit function\[{{y}^{3}}+{{x}^{3}}-3axy=0\].
By differentiating it with respect to ’x’ we will have,
\[3{{x}^{2}}+3{{y}^{2}}\dfrac{dy}{dx}-3a\left[ y\left( 1 \right)+x\left( \dfrac{dy}{dx} \right) \right]=0\] where, we got the equation using the multiplication rule, which is \[\dfrac{d}{dx}\left( uv \right)=\dfrac{du}{dx}\left( v \right)+\dfrac{dv}{dx}\left( u \right)\].
On further solving the equation, we get
\[3{{x}^{2}}+3{{y}^{2}}\dfrac{dy}{dx}-3ay-3ax\dfrac{dy}{dx}=0\]
On simplifying, we get
\[{{x}^{2}}+{{y}^{2}}\dfrac{dy}{dx}-ay-ax\dfrac{dy}{dx}=0\]
Getting the \[\dfrac{dy}{dx}\] terms together, we get
\[\dfrac{dy}{dx}\left( {{y}^{2}}-ax \right)=ay-{{x}^{2}}\]
\[\dfrac{dy}{dx}=\dfrac{ay-{{x}^{2}}}{{{y}^{2}}-ax}\]
So, we have obtained the \[\dfrac{dy}{dx}\] , which is equals to \[\dfrac{dy}{dx}=\dfrac{ay-{{x}^{2}}}{{{y}^{2}}-ax}\].
Now, let us differentiate \[\dfrac{dy}{dx}\] again to find \[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}\].
\[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{\left( {{y}^{2}}-ax \right)\dfrac{d}{dx}\left( ay-{{x}^{2}} \right)-\left( ay-{{x}^{2}} \right)\dfrac{d}{dx}\left( {{y}^{2}}-ax \right)}{{{\left( {{y}^{2}}-ax \right)}^{2}}}\]
We obtained the above equation using division rule of differentiation, which is \[\dfrac{d}{dx}\left( \dfrac{u}{v} \right)=\dfrac{v\dfrac{du}{dx}-u\dfrac{dv}{dx}}{{{v}^{2}}}\], where $u=ay-{{x}^{2}}$ and $v={{y}^{2}}-ax$ .
On further solving we will have:
\[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{\left( {{y}^{2}}-ax \right)\left( a\dfrac{dy}{dx}-2x \right)-\left( ay-{{x}^{2}} \right)\left( 2y\dfrac{dy}{dx}-a \right)}{{{\left( {{y}^{2}}-ax \right)}^{2}}}\].
Substituting \[\dfrac{dy}{dx}=\dfrac{ay-{{x}^{2}}}{{{y}^{2}}-ax}\]in the above equation, we have:
\[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{\left( {{y}^{2}}-ax \right)\left( a\left( \dfrac{ay-{{x}^{2}}}{{{y}^{2}}-ax} \right)-2x \right)-\left( ay-{{x}^{2}} \right)\left( 2y\left( \dfrac{ay-{{x}^{2}}}{{{y}^{2}}-ax} \right)-a \right)}{{{\left( {{y}^{2}}-ax \right)}^{2}}}\]
By expanding the above equation we have:
\[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{\left( {{y}^{2}}-ax \right)\left( {{a}^{2}}y-a{{x}^{2}}-2x{{y}^{2}}+2a{{x}^{2}} \right)-\left( ay-{{x}^{2}} \right)\left( 2a{{y}^{2}}-2y{{x}^{2}}-a{{y}^{2}}+{{a}^{2}}x \right)}{{{\left( {{y}^{2}}-ax \right)}^{3}}}\]
On simplifying, we get
\[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{\left( {{y}^{2}}-ax \right)\left( {{a}^{2}}y+a{{x}^{2}}-2x{{y}^{2}}\right)-\left( ay-{{x}^{2}} \right)\left( a{{y}^{2}}-2y{{x}^{2}}+{{a}^{2}}x \right)}{{{\left( {{y}^{2}}-ax \right)}^{3}}}\]
\[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{{{a}^{2}}{{y}^{3}}-2x{{y}^{4}}+a{{x}^{2}}{{y}^{2}}-{{a}^{3}}xy+2a{{x}^{2}}{{y}^{2}}-{{a}^{2}}{{x}^{3}}-\left( {{a}^{2}}{{y}^{3}}-2a{{x}^{2}}{{y}^{2}}+{{a}^{3}}xy-a{{x}^{2}}{{y}^{2}}+2{{x}^{4}}y-{{a}^{2}}{{x}^{3}} \right)}{{{\left( {{y}^{2}}-ax \right)}^{3}}}\]
Upon making the required cancellations, we have;
\[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{-2{{a}^{3}}xy-2{{x}^{4}}y-2x{{y}^{4}}+6a{{x}^{2}}{{y}^{2}}}{{{\left( {{y}^{2}}-ax \right)}^{3}}}\]
\[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{-2{{a}^{3}}xy-2xy\left( {{x}^{3}}+{{y}^{3}}-3axy \right)}{{{\left( {{y}^{2}}-ax \right)}^{3}}}\].
Since \[{{y}^{3}}+{{x}^{3}}-3axy=0\], we have:
\[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{-2{{a}^{3}}xy}{{{\left( {{y}^{2}}-ax \right)}^{3}}}\]
So, \[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{2{{a}^{3}}xy}{{{\left( ax-{{y}^{2}} \right)}^{3}}}\].
Hence \[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{2{{a}^{3}}xy}{{{\left( ax-{{y}^{2}} \right)}^{3}}}\] is the answer.
Note: While finding differentiation of an implicit function, firstly remember the product rule \[\dfrac{d}{dx}\left( uv \right)=\dfrac{du}{dx}\left( v \right)+\dfrac{dv}{dx}\left( u \right)\] and division rule \[\dfrac{d}{dx}\left( \dfrac{u}{v} \right)=\dfrac{v\dfrac{du}{dx}-u\dfrac{dv}{dx}}{{{v}^{2}}}\] are important while doing differentiation. It is suggested that first to simplify only \[\dfrac{dy}{dx}\]and then differentiate \[\dfrac{dy}{dx}\]using division rule as this will help you in solving question with less error. The question is easy but there are chances of making calculation errors, so try to avoid making calculation mistakes.
Complete step-by-step solution:
Here, the given function is implicit function\[{{y}^{3}}+{{x}^{3}}-3axy=0\].
By differentiating it with respect to ’x’ we will have,
\[3{{x}^{2}}+3{{y}^{2}}\dfrac{dy}{dx}-3a\left[ y\left( 1 \right)+x\left( \dfrac{dy}{dx} \right) \right]=0\] where, we got the equation using the multiplication rule, which is \[\dfrac{d}{dx}\left( uv \right)=\dfrac{du}{dx}\left( v \right)+\dfrac{dv}{dx}\left( u \right)\].
On further solving the equation, we get
\[3{{x}^{2}}+3{{y}^{2}}\dfrac{dy}{dx}-3ay-3ax\dfrac{dy}{dx}=0\]
On simplifying, we get
\[{{x}^{2}}+{{y}^{2}}\dfrac{dy}{dx}-ay-ax\dfrac{dy}{dx}=0\]
Getting the \[\dfrac{dy}{dx}\] terms together, we get
\[\dfrac{dy}{dx}\left( {{y}^{2}}-ax \right)=ay-{{x}^{2}}\]
\[\dfrac{dy}{dx}=\dfrac{ay-{{x}^{2}}}{{{y}^{2}}-ax}\]
So, we have obtained the \[\dfrac{dy}{dx}\] , which is equals to \[\dfrac{dy}{dx}=\dfrac{ay-{{x}^{2}}}{{{y}^{2}}-ax}\].
Now, let us differentiate \[\dfrac{dy}{dx}\] again to find \[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}\].
\[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{\left( {{y}^{2}}-ax \right)\dfrac{d}{dx}\left( ay-{{x}^{2}} \right)-\left( ay-{{x}^{2}} \right)\dfrac{d}{dx}\left( {{y}^{2}}-ax \right)}{{{\left( {{y}^{2}}-ax \right)}^{2}}}\]
We obtained the above equation using division rule of differentiation, which is \[\dfrac{d}{dx}\left( \dfrac{u}{v} \right)=\dfrac{v\dfrac{du}{dx}-u\dfrac{dv}{dx}}{{{v}^{2}}}\], where $u=ay-{{x}^{2}}$ and $v={{y}^{2}}-ax$ .
On further solving we will have:
\[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{\left( {{y}^{2}}-ax \right)\left( a\dfrac{dy}{dx}-2x \right)-\left( ay-{{x}^{2}} \right)\left( 2y\dfrac{dy}{dx}-a \right)}{{{\left( {{y}^{2}}-ax \right)}^{2}}}\].
Substituting \[\dfrac{dy}{dx}=\dfrac{ay-{{x}^{2}}}{{{y}^{2}}-ax}\]in the above equation, we have:
\[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{\left( {{y}^{2}}-ax \right)\left( a\left( \dfrac{ay-{{x}^{2}}}{{{y}^{2}}-ax} \right)-2x \right)-\left( ay-{{x}^{2}} \right)\left( 2y\left( \dfrac{ay-{{x}^{2}}}{{{y}^{2}}-ax} \right)-a \right)}{{{\left( {{y}^{2}}-ax \right)}^{2}}}\]
By expanding the above equation we have:
\[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{\left( {{y}^{2}}-ax \right)\left( {{a}^{2}}y-a{{x}^{2}}-2x{{y}^{2}}+2a{{x}^{2}} \right)-\left( ay-{{x}^{2}} \right)\left( 2a{{y}^{2}}-2y{{x}^{2}}-a{{y}^{2}}+{{a}^{2}}x \right)}{{{\left( {{y}^{2}}-ax \right)}^{3}}}\]
On simplifying, we get
\[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{\left( {{y}^{2}}-ax \right)\left( {{a}^{2}}y+a{{x}^{2}}-2x{{y}^{2}}\right)-\left( ay-{{x}^{2}} \right)\left( a{{y}^{2}}-2y{{x}^{2}}+{{a}^{2}}x \right)}{{{\left( {{y}^{2}}-ax \right)}^{3}}}\]
\[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{{{a}^{2}}{{y}^{3}}-2x{{y}^{4}}+a{{x}^{2}}{{y}^{2}}-{{a}^{3}}xy+2a{{x}^{2}}{{y}^{2}}-{{a}^{2}}{{x}^{3}}-\left( {{a}^{2}}{{y}^{3}}-2a{{x}^{2}}{{y}^{2}}+{{a}^{3}}xy-a{{x}^{2}}{{y}^{2}}+2{{x}^{4}}y-{{a}^{2}}{{x}^{3}} \right)}{{{\left( {{y}^{2}}-ax \right)}^{3}}}\]
Upon making the required cancellations, we have;
\[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{-2{{a}^{3}}xy-2{{x}^{4}}y-2x{{y}^{4}}+6a{{x}^{2}}{{y}^{2}}}{{{\left( {{y}^{2}}-ax \right)}^{3}}}\]
\[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{-2{{a}^{3}}xy-2xy\left( {{x}^{3}}+{{y}^{3}}-3axy \right)}{{{\left( {{y}^{2}}-ax \right)}^{3}}}\].
Since \[{{y}^{3}}+{{x}^{3}}-3axy=0\], we have:
\[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{-2{{a}^{3}}xy}{{{\left( {{y}^{2}}-ax \right)}^{3}}}\]
So, \[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{2{{a}^{3}}xy}{{{\left( ax-{{y}^{2}} \right)}^{3}}}\].
Hence \[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{2{{a}^{3}}xy}{{{\left( ax-{{y}^{2}} \right)}^{3}}}\] is the answer.
Note: While finding differentiation of an implicit function, firstly remember the product rule \[\dfrac{d}{dx}\left( uv \right)=\dfrac{du}{dx}\left( v \right)+\dfrac{dv}{dx}\left( u \right)\] and division rule \[\dfrac{d}{dx}\left( \dfrac{u}{v} \right)=\dfrac{v\dfrac{du}{dx}-u\dfrac{dv}{dx}}{{{v}^{2}}}\] are important while doing differentiation. It is suggested that first to simplify only \[\dfrac{dy}{dx}\]and then differentiate \[\dfrac{dy}{dx}\]using division rule as this will help you in solving question with less error. The question is easy but there are chances of making calculation errors, so try to avoid making calculation mistakes.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Basicity of sulphurous acid and sulphuric acid are

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

