
If we have an expression as ${\sin ^2}x + 2\cos y + xy = 0$, then $\dfrac{{dy}}{{dx}} = ?$
$\left( 1 \right)\dfrac{{\left( {y + 2\sin x} \right)}}{{\left( {2\sin y + x} \right)}}$
\[\left( 2 \right)\dfrac{{\left( {y + \sin 2x} \right)}}{{\left( {2\sin y - x} \right)}}\]
$\left( 3 \right)\dfrac{{\left( {y + 2\sin x} \right)}}{{\left( {\sin y + x} \right)}}$
$\left( 4 \right)$ None of these
Answer
493.2k+ views
Hint: In order to solve this question, we will apply the differentiation in the given equation and then, we will substitute the respective differentiation value of each term in the obtained expression. After that, we will simplify the obtained expression by using appropriate mathematical operations.
Complete step-by-step solution:
Since, the given expression is ${\sin ^2}x + 2\cos y + xy = 0$.
Now, we will differentiate the whole expression with respect to $x$.
\[ \Rightarrow \dfrac{d}{{dx}}\left( {{{\sin }^2}x + 2\cos y + xy} \right) = \dfrac{d}{{dx}}\left( 0 \right)\]
Here, we will imply the different sign to each term to proceed further.
\[ \Rightarrow \dfrac{d}{{dx}}\left( {{{\sin }^2}x} \right) + \dfrac{d}{{dx}}\left( {2\cos y} \right) + \dfrac{d}{{dx}}\left( {xy} \right) = 0\]
After that, we will use the rule of differentiation and substitute $2\sin x\cos x$ for the differentiation of ${\sin ^2}x$, $ - 2\sin y\dfrac{{dy}}{{dx}}$ for the differentiation of $2\cos y$, and $y + x\dfrac{{dy}}{{dx}}$ for the differentiation of $xy$ in the above expression. Then, the obtained expression is:
\[ \Rightarrow 2\sin x\cos x - 2\sin y\dfrac{{dy}}{{dx}} + y + x\dfrac{{dy}}{{dx}} = 0\]
Now, we will add $2\sin y\dfrac{{dy}}{{dx}}$ and subtract $x\dfrac{{dy}}{{dx}}$ in the above step as,
\[ \Rightarrow 2\sin x\cos x - 2\sin y\dfrac{{dy}}{{dx}} + y + x\dfrac{{dy}}{{dx}} + 2\sin y\dfrac{{dy}}{{dx}} - x\dfrac{{dy}}{{dx}} = 0 + 2\sin y\dfrac{{dy}}{{dx}} - x\dfrac{{dy}}{{dx}}\]
Here, we will cancel out the equal like terms to simplify the above expression as:
\[ \Rightarrow 2\sin x\cos x + y = 2\sin y\dfrac{{dy}}{{dx}} - x\dfrac{{dy}}{{dx}}\]
Then, we will use the formula of $\sin 2x$ and substitute $\sin 2x$ for $2\sin x\cos x$ in the obtained expression.
\[ \Rightarrow \sin 2x + y = 2\sin y\dfrac{{dy}}{{dx}} - x\dfrac{{dy}}{{dx}}\]
Now, we will take the term $\dfrac{{dy}}{{dx}}$ common from the above expression and will proceed further.
\[ \Rightarrow \sin 2x + y = \dfrac{{dy}}{{dx}}\left( {2\sin y - x} \right)\]
After that, we will divide by $2\sin y - x$ each side of the above expression and simplify it.
\[ \Rightarrow \dfrac{{\sin 2x + y}}{{2\sin y - x}} = \dfrac{{\dfrac{{dy}}{{dx}}\left( {2\sin y - x} \right)}}{{2\sin y - x}}\]
Here, we will cancel out the term $2\sin y - x$ from the left side of the above expression to get the final answer.
\[ \Rightarrow \dfrac{{\sin 2x + y}}{{2\sin y - x}} = \dfrac{{dy}}{{dx}}\]
Hence, Option B is the right answer.
Note: Here, we will mention some important factors that are used in the solution of the question.
\[ \Rightarrow \dfrac{{d\left( {\sin x} \right)}}{{dx}} = \cos x\]
\[ \Rightarrow \dfrac{{d\left( {\cos x} \right)}}{{dx}} = - \sin x\]
\[ \Rightarrow \dfrac{{d\left( {uv} \right)}}{{dx}} = \dfrac{{du}}{{dx}} \cdot v + u \cdot \dfrac{{dv}}{{dx}}\]
Complete step-by-step solution:
Since, the given expression is ${\sin ^2}x + 2\cos y + xy = 0$.
Now, we will differentiate the whole expression with respect to $x$.
\[ \Rightarrow \dfrac{d}{{dx}}\left( {{{\sin }^2}x + 2\cos y + xy} \right) = \dfrac{d}{{dx}}\left( 0 \right)\]
Here, we will imply the different sign to each term to proceed further.
\[ \Rightarrow \dfrac{d}{{dx}}\left( {{{\sin }^2}x} \right) + \dfrac{d}{{dx}}\left( {2\cos y} \right) + \dfrac{d}{{dx}}\left( {xy} \right) = 0\]
After that, we will use the rule of differentiation and substitute $2\sin x\cos x$ for the differentiation of ${\sin ^2}x$, $ - 2\sin y\dfrac{{dy}}{{dx}}$ for the differentiation of $2\cos y$, and $y + x\dfrac{{dy}}{{dx}}$ for the differentiation of $xy$ in the above expression. Then, the obtained expression is:
\[ \Rightarrow 2\sin x\cos x - 2\sin y\dfrac{{dy}}{{dx}} + y + x\dfrac{{dy}}{{dx}} = 0\]
Now, we will add $2\sin y\dfrac{{dy}}{{dx}}$ and subtract $x\dfrac{{dy}}{{dx}}$ in the above step as,
\[ \Rightarrow 2\sin x\cos x - 2\sin y\dfrac{{dy}}{{dx}} + y + x\dfrac{{dy}}{{dx}} + 2\sin y\dfrac{{dy}}{{dx}} - x\dfrac{{dy}}{{dx}} = 0 + 2\sin y\dfrac{{dy}}{{dx}} - x\dfrac{{dy}}{{dx}}\]
Here, we will cancel out the equal like terms to simplify the above expression as:
\[ \Rightarrow 2\sin x\cos x + y = 2\sin y\dfrac{{dy}}{{dx}} - x\dfrac{{dy}}{{dx}}\]
Then, we will use the formula of $\sin 2x$ and substitute $\sin 2x$ for $2\sin x\cos x$ in the obtained expression.
\[ \Rightarrow \sin 2x + y = 2\sin y\dfrac{{dy}}{{dx}} - x\dfrac{{dy}}{{dx}}\]
Now, we will take the term $\dfrac{{dy}}{{dx}}$ common from the above expression and will proceed further.
\[ \Rightarrow \sin 2x + y = \dfrac{{dy}}{{dx}}\left( {2\sin y - x} \right)\]
After that, we will divide by $2\sin y - x$ each side of the above expression and simplify it.
\[ \Rightarrow \dfrac{{\sin 2x + y}}{{2\sin y - x}} = \dfrac{{\dfrac{{dy}}{{dx}}\left( {2\sin y - x} \right)}}{{2\sin y - x}}\]
Here, we will cancel out the term $2\sin y - x$ from the left side of the above expression to get the final answer.
\[ \Rightarrow \dfrac{{\sin 2x + y}}{{2\sin y - x}} = \dfrac{{dy}}{{dx}}\]
Hence, Option B is the right answer.
Note: Here, we will mention some important factors that are used in the solution of the question.
\[ \Rightarrow \dfrac{{d\left( {\sin x} \right)}}{{dx}} = \cos x\]
\[ \Rightarrow \dfrac{{d\left( {\cos x} \right)}}{{dx}} = - \sin x\]
\[ \Rightarrow \dfrac{{d\left( {uv} \right)}}{{dx}} = \dfrac{{du}}{{dx}} \cdot v + u \cdot \dfrac{{dv}}{{dx}}\]
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

Give 10 examples of unisexual and bisexual flowers

