
If we have an expression as $\dfrac{{{e^x}}}{{1 - x}} = {B_o} + {B_1}x + {B_2}{x^2} + ...... + {B_{n - 1}}{x^{n - 1}} + {B_n}{x^n}$ then ${B_n} - {B_{n - 1}}$ equals
$\left( a \right)\dfrac{1}{{n!}}$
$\left( b \right)\dfrac{1}{{\left( {n - 1} \right)!}}$
$\left( c \right)\dfrac{1}{{n!}} - \dfrac{1}{{\left( {n - 1} \right)!}}$
$\left( d \right)1$
Answer
573.6k+ views
Hint: In this particular question use the concept of expansion and then multiplication, the expansion of ${e^x}$ is $\left( {1 + \dfrac{x}{{1!}} + \dfrac{{{x^2}}}{{2!}} + ..... + \dfrac{{{x^{n - 1}}}}{{\left( {n - 1} \right)!}} + \dfrac{{{x^n}}}{{n!}}} \right)$ and the expansion of ${\left( {1 - x} \right)^{ - 1}}$ is given as, $\left( {1 + x + {x^2} + {x^3} + ..... + {x^{n - 1}} + {x^n}} \right)$ so use these concepts to reach the solution of the question.
Complete step-by-step solution:
Given equation:
$\dfrac{{{e^x}}}{{1 - x}} = {B_o} + {B_1}x + {B_2}{x^2} + ...... + {B_{n - 1}}{x^{n - 1}} + {B_n}{x^n}$
Now we have to find out the value of ${B_n} - {B_{n - 1}}$
Now consider the LHS of the given equation we have,
$ \Rightarrow \dfrac{{{e^x}}}{{1 - x}}$
Now the above equation is written as
$ \Rightarrow {e^x}{\left( {1 - x} \right)^{ - 1}}$
Now as we know that the expansion of ${e^x}$ is $\left( {1 + \dfrac{x}{{1!}} + \dfrac{{{x^2}}}{{2!}} + ..... + \dfrac{{{x^{n - 1}}}}{{\left( {n - 1} \right)!}} + \dfrac{{{x^n}}}{{n!}}} \right)$ and the expansion of ${\left( {1 - x} \right)^{ - 1}}$ is given as, $\left( {1 + x + {x^2} + {x^3} + ..... + {x^{n - 1}} + {x^n}} \right)$ so we have,
$ \Rightarrow {e^x}{\left( {1 - x} \right)^{ - 1}} = \left( {1 + \dfrac{x}{{1!}} + \dfrac{{{x^2}}}{{2!}} + ..... + \dfrac{{{x^{n - 1}}}}{{\left( {n - 1} \right)!}} + \dfrac{{{x^n}}}{{n!}}} \right)\left( {1 + x + {x^2} + {x^3} + ..... + {x^{n - 1}} + {x^n}} \right)$
\[
\Rightarrow {e^x}{\left( {1 - x} \right)^{ - 1}} = 1 + \left( {1 + \dfrac{1}{{1!}}} \right)x + \left( {1 + \dfrac{1}{{1!}} + \dfrac{1}{{2!}}} \right){x^2} + \left( {1 + \dfrac{1}{{1!}} + \dfrac{1}{{2!}} + \dfrac{1}{{3!}}} \right){x^3} + .... + \left( {1 + \dfrac{1}{{1!}} + \dfrac{1}{{2!}} + ... + \dfrac{1}{{\left( {n - 1} \right)!}}} \right){x^{n - 1}} \\
+ \left( {1 + \dfrac{1}{{1!}} + \dfrac{1}{{2!}} + ... + \dfrac{1}{{\left( {n - 1} \right)!}} + \dfrac{1}{{n!}}} \right){x^n} \\
\]
Now compare the coefficients of the RHS of the above equation with the RHS of the given equation we have,
$\dfrac{{{e^x}}}{{1 - x}} = {B_o} + {B_1}x + {B_2}{x^2} + ...... + {B_{n - 1}}{x^{n - 1}} + {B_n}{x^n}$
$ \Rightarrow {B_o} = 1,{B_1} = \left( {1 + \dfrac{1}{{1!}}} \right),......,{B_{n - 1}} = \left( {1 + \dfrac{1}{{1!}} + \dfrac{1}{{2!}} + ... + \dfrac{1}{{\left( {n - 1} \right)!}}} \right),{B_n} = \left( {1 + \dfrac{1}{{1!}} + \dfrac{1}{{2!}} + ... + \dfrac{1}{{\left( {n - 1} \right)!}} + \dfrac{1}{{n!}}} \right)$
Now we have to find out the value of ${B_n} - {B_{n - 1}}$.
$ \Rightarrow {B_n} - {B_{n - 1}} = \left( {1 + \dfrac{1}{{1!}} + \dfrac{1}{{2!}} + ... + \dfrac{1}{{\left( {n - 1} \right)!}} + \dfrac{1}{{n!}}} \right) - \left( {1 + \dfrac{1}{{1!}} + \dfrac{1}{{2!}} + ... + \dfrac{1}{{\left( {n - 1} \right)!}}} \right)$
So as we see that all the terms are cancel out except one term so we have,
$ \Rightarrow {B_n} - {B_{n - 1}} = \dfrac{1}{{n!}}$
So this is the required answer.
Hence option (a) is the correct answer.
Note: Whenever we face such types of questions the key concept we have to remember is that always recall the expansion of standard terms such as ${e^x}{\text{ and }}{\left( {1 - x} \right)^{ - 1}}$ which is all written above then multiply them as above and write the coefficients of ${B_o},{B_1},{B_2}......{B_{n - 1}},{B_n}$ as above then find out the value of $\left( {{B_n} - {B_{n - 1}}} \right)$ as above, we will get the required answer.
Complete step-by-step solution:
Given equation:
$\dfrac{{{e^x}}}{{1 - x}} = {B_o} + {B_1}x + {B_2}{x^2} + ...... + {B_{n - 1}}{x^{n - 1}} + {B_n}{x^n}$
Now we have to find out the value of ${B_n} - {B_{n - 1}}$
Now consider the LHS of the given equation we have,
$ \Rightarrow \dfrac{{{e^x}}}{{1 - x}}$
Now the above equation is written as
$ \Rightarrow {e^x}{\left( {1 - x} \right)^{ - 1}}$
Now as we know that the expansion of ${e^x}$ is $\left( {1 + \dfrac{x}{{1!}} + \dfrac{{{x^2}}}{{2!}} + ..... + \dfrac{{{x^{n - 1}}}}{{\left( {n - 1} \right)!}} + \dfrac{{{x^n}}}{{n!}}} \right)$ and the expansion of ${\left( {1 - x} \right)^{ - 1}}$ is given as, $\left( {1 + x + {x^2} + {x^3} + ..... + {x^{n - 1}} + {x^n}} \right)$ so we have,
$ \Rightarrow {e^x}{\left( {1 - x} \right)^{ - 1}} = \left( {1 + \dfrac{x}{{1!}} + \dfrac{{{x^2}}}{{2!}} + ..... + \dfrac{{{x^{n - 1}}}}{{\left( {n - 1} \right)!}} + \dfrac{{{x^n}}}{{n!}}} \right)\left( {1 + x + {x^2} + {x^3} + ..... + {x^{n - 1}} + {x^n}} \right)$
\[
\Rightarrow {e^x}{\left( {1 - x} \right)^{ - 1}} = 1 + \left( {1 + \dfrac{1}{{1!}}} \right)x + \left( {1 + \dfrac{1}{{1!}} + \dfrac{1}{{2!}}} \right){x^2} + \left( {1 + \dfrac{1}{{1!}} + \dfrac{1}{{2!}} + \dfrac{1}{{3!}}} \right){x^3} + .... + \left( {1 + \dfrac{1}{{1!}} + \dfrac{1}{{2!}} + ... + \dfrac{1}{{\left( {n - 1} \right)!}}} \right){x^{n - 1}} \\
+ \left( {1 + \dfrac{1}{{1!}} + \dfrac{1}{{2!}} + ... + \dfrac{1}{{\left( {n - 1} \right)!}} + \dfrac{1}{{n!}}} \right){x^n} \\
\]
Now compare the coefficients of the RHS of the above equation with the RHS of the given equation we have,
$\dfrac{{{e^x}}}{{1 - x}} = {B_o} + {B_1}x + {B_2}{x^2} + ...... + {B_{n - 1}}{x^{n - 1}} + {B_n}{x^n}$
$ \Rightarrow {B_o} = 1,{B_1} = \left( {1 + \dfrac{1}{{1!}}} \right),......,{B_{n - 1}} = \left( {1 + \dfrac{1}{{1!}} + \dfrac{1}{{2!}} + ... + \dfrac{1}{{\left( {n - 1} \right)!}}} \right),{B_n} = \left( {1 + \dfrac{1}{{1!}} + \dfrac{1}{{2!}} + ... + \dfrac{1}{{\left( {n - 1} \right)!}} + \dfrac{1}{{n!}}} \right)$
Now we have to find out the value of ${B_n} - {B_{n - 1}}$.
$ \Rightarrow {B_n} - {B_{n - 1}} = \left( {1 + \dfrac{1}{{1!}} + \dfrac{1}{{2!}} + ... + \dfrac{1}{{\left( {n - 1} \right)!}} + \dfrac{1}{{n!}}} \right) - \left( {1 + \dfrac{1}{{1!}} + \dfrac{1}{{2!}} + ... + \dfrac{1}{{\left( {n - 1} \right)!}}} \right)$
So as we see that all the terms are cancel out except one term so we have,
$ \Rightarrow {B_n} - {B_{n - 1}} = \dfrac{1}{{n!}}$
So this is the required answer.
Hence option (a) is the correct answer.
Note: Whenever we face such types of questions the key concept we have to remember is that always recall the expansion of standard terms such as ${e^x}{\text{ and }}{\left( {1 - x} \right)^{ - 1}}$ which is all written above then multiply them as above and write the coefficients of ${B_o},{B_1},{B_2}......{B_{n - 1}},{B_n}$ as above then find out the value of $\left( {{B_n} - {B_{n - 1}}} \right)$ as above, we will get the required answer.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

