
If we have an expression as ${{\cos }^{-1}}x-{{\cos }^{-1}}\dfrac{y}{2}=\alpha $, where $-1\le x\le 1,-2\le y\le 2,x\le \dfrac{y}{2}$ the $4{{x}^{2}}-4xy\cos \alpha +{{y}^{2}}$ is equal to
[a] $4{{\sin }^{2}}\alpha +2{{x}^{2}}{{y}^{2}}$
[b] $4{{\sin }^{2}}\alpha -2{{x}^{2}}{{y}^{2}}$
[c] $4{{\sin }^{2}}\alpha $
[d] None of these
Answer
510k+ views
Hint: Take cos on both sides of the equation ${{\cos }^{-1}}x-{{\cos }^{-1}}\dfrac{y}{2}=\alpha $ and use the fact that $\cos \left( A-B \right)=\cos A\cos B+\sin A\sin B$. Simplify and hence find the value of the expression $4{{x}^{2}}-4xy\cos \alpha +{{y}^{2}}$.
Complete step-by-step solution:
We have ${{\cos }^{-1}}x-{{\cos }^{-1}}\dfrac{y}{2}=\alpha $
Taking cos on both sides, we get
$\cos \left( {{\cos }^{-1}}x-{{\cos }^{-1}}\dfrac{y}{2} \right)=\cos \alpha $
We know that $\cos \left( A-B \right)=\cos A\cos B+\sin A\sin B$
Hence, we have
$\cos \left( {{\cos }^{-1}}x \right)\cos \left( {{\cos }^{-1}}\dfrac{y}{2} \right)+\sin \left( {{\cos }^{-1}}x \right)\sin \left( {{\cos }^{-1}}\dfrac{y}{2} \right)=\cos \alpha $
We know that $\cos \left( {{\cos }^{-1}}x \right)=x\forall x\in \left[ -1,1 \right]$ and $\sin \left( {{\cos }^{-1}}x \right)=\sqrt{1-{{x}^{2}}}\forall x\in \left[ -1,1 \right]$
Hence, we have
$x\dfrac{y}{2}+\sqrt{1-{{x}^{2}}}\times \sqrt{1-\dfrac{{{y}^{2}}}{4}}=\cos \alpha $
Subtracting $\dfrac{xy}{2}$ on both sides, we get
$\sqrt{1-{{x}^{2}}}\dfrac{\sqrt{4-{{y}^{2}}}}{2}=\cos \alpha -\dfrac{xy}{2}$
Multiplying by 2 on both sides, we get
$\sqrt{1-{{x}^{2}}}\sqrt{4-{{y}^{2}}}=2\cos \alpha -xy$
Squaring both sides, we get
$\left( 1-{{x}^{2}} \right)\left( 4-{{y}^{2}} \right)={{\left( 2\cos \alpha -xy \right)}^{2}}$
We know that ${{\left( a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}}$
Hence, we have
$\left( 1-{{x}^{2}} \right)\left( 4-{{y}^{2}} \right)=4{{\cos }^{2}}\alpha +{{x}^{2}}{{y}^{2}}-4xy\cos \alpha $
Expanding the term on LHS, we get
$4-{{y}^{2}}-4{{x}^{2}}+{{x}^{2}}{{y}^{2}}=4{{\cos }^{2}}\alpha -4xy\cos \alpha +{{x}^{2}}{{y}^{2}}$
Subtracting ${{x}^{2}}{{y}^{2}}$ from both sides, we get
$4-{{y}^{2}}-4{{x}^{2}}=4{{\cos }^{2}}\alpha -4xy\cos \alpha $
Adding $4{{x}^{2}}+{{y}^{2}}$ on both sides, we get
$4=4{{x}^{2}}+{{y}^{2}}-4xy\cos \alpha +4{{\cos }^{2}}\alpha $
Subtracting $4{{\cos }^{2}}\alpha $ on both sides, we get
$4{{x}^{2}}-4xy\cos \alpha +{{y}^{2}}=4-4{{\cos }^{2}}\alpha =4\left( 1-{{\cos }^{2}}\alpha \right)$
We know that $1-{{\cos }^{2}}\alpha ={{\sin }^{2}}\alpha $
Hence, we have
$4{{x}^{2}}-4xy\cos \alpha +{{y}^{2}}=4{{\sin }^{2}}\alpha $
Hence option [c] is correct.
Note: Alternative solution:
We know that ${{\cos }^{-1}}x-{{\cos }^{-1}}y={{\cos }^{-1}}\left( xy-\sqrt{1-{{x}^{2}}}\sqrt{1-{{y}^{2}}} \right)+2k\pi ,k\in \mathbb{N}$, where k is suitably chosen.
Hence, we have
$\begin{align}
& {{\cos }^{-1}}x-{{\cos }^{-1}}\dfrac{y}{2}={{\cos }^{-1}}\left( \dfrac{xy}{2}-\sqrt{1-{{x}^{2}}}\sqrt{1-\dfrac{{{y}^{2}}}{4}} \right)+2k\pi ,k\in \mathbb{N} \\
& \Rightarrow \alpha ={{\cos }^{-1}}\left( \dfrac{xy}{2}-\sqrt{1-{{x}^{2}}}\sqrt{1-\dfrac{{{y}^{2}}}{4}} \right)+2k\pi ,k\in \mathbb{N} \\
\end{align}$
Taking cos on both sides, we get
$\cos \alpha =\left( \dfrac{xy}{2}-\sqrt{1-{{x}^{2}}}\sqrt{1-\dfrac{{{y}^{2}}}{4}} \right)$, which is the same as obtained above. Hence proceeding as above, we get option [c] is correct.
Complete step-by-step solution:
We have ${{\cos }^{-1}}x-{{\cos }^{-1}}\dfrac{y}{2}=\alpha $
Taking cos on both sides, we get
$\cos \left( {{\cos }^{-1}}x-{{\cos }^{-1}}\dfrac{y}{2} \right)=\cos \alpha $
We know that $\cos \left( A-B \right)=\cos A\cos B+\sin A\sin B$
Hence, we have
$\cos \left( {{\cos }^{-1}}x \right)\cos \left( {{\cos }^{-1}}\dfrac{y}{2} \right)+\sin \left( {{\cos }^{-1}}x \right)\sin \left( {{\cos }^{-1}}\dfrac{y}{2} \right)=\cos \alpha $
We know that $\cos \left( {{\cos }^{-1}}x \right)=x\forall x\in \left[ -1,1 \right]$ and $\sin \left( {{\cos }^{-1}}x \right)=\sqrt{1-{{x}^{2}}}\forall x\in \left[ -1,1 \right]$
Hence, we have
$x\dfrac{y}{2}+\sqrt{1-{{x}^{2}}}\times \sqrt{1-\dfrac{{{y}^{2}}}{4}}=\cos \alpha $
Subtracting $\dfrac{xy}{2}$ on both sides, we get
$\sqrt{1-{{x}^{2}}}\dfrac{\sqrt{4-{{y}^{2}}}}{2}=\cos \alpha -\dfrac{xy}{2}$
Multiplying by 2 on both sides, we get
$\sqrt{1-{{x}^{2}}}\sqrt{4-{{y}^{2}}}=2\cos \alpha -xy$
Squaring both sides, we get
$\left( 1-{{x}^{2}} \right)\left( 4-{{y}^{2}} \right)={{\left( 2\cos \alpha -xy \right)}^{2}}$
We know that ${{\left( a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}}$
Hence, we have
$\left( 1-{{x}^{2}} \right)\left( 4-{{y}^{2}} \right)=4{{\cos }^{2}}\alpha +{{x}^{2}}{{y}^{2}}-4xy\cos \alpha $
Expanding the term on LHS, we get
$4-{{y}^{2}}-4{{x}^{2}}+{{x}^{2}}{{y}^{2}}=4{{\cos }^{2}}\alpha -4xy\cos \alpha +{{x}^{2}}{{y}^{2}}$
Subtracting ${{x}^{2}}{{y}^{2}}$ from both sides, we get
$4-{{y}^{2}}-4{{x}^{2}}=4{{\cos }^{2}}\alpha -4xy\cos \alpha $
Adding $4{{x}^{2}}+{{y}^{2}}$ on both sides, we get
$4=4{{x}^{2}}+{{y}^{2}}-4xy\cos \alpha +4{{\cos }^{2}}\alpha $
Subtracting $4{{\cos }^{2}}\alpha $ on both sides, we get
$4{{x}^{2}}-4xy\cos \alpha +{{y}^{2}}=4-4{{\cos }^{2}}\alpha =4\left( 1-{{\cos }^{2}}\alpha \right)$
We know that $1-{{\cos }^{2}}\alpha ={{\sin }^{2}}\alpha $
Hence, we have
$4{{x}^{2}}-4xy\cos \alpha +{{y}^{2}}=4{{\sin }^{2}}\alpha $
Hence option [c] is correct.
Note: Alternative solution:
We know that ${{\cos }^{-1}}x-{{\cos }^{-1}}y={{\cos }^{-1}}\left( xy-\sqrt{1-{{x}^{2}}}\sqrt{1-{{y}^{2}}} \right)+2k\pi ,k\in \mathbb{N}$, where k is suitably chosen.
Hence, we have
$\begin{align}
& {{\cos }^{-1}}x-{{\cos }^{-1}}\dfrac{y}{2}={{\cos }^{-1}}\left( \dfrac{xy}{2}-\sqrt{1-{{x}^{2}}}\sqrt{1-\dfrac{{{y}^{2}}}{4}} \right)+2k\pi ,k\in \mathbb{N} \\
& \Rightarrow \alpha ={{\cos }^{-1}}\left( \dfrac{xy}{2}-\sqrt{1-{{x}^{2}}}\sqrt{1-\dfrac{{{y}^{2}}}{4}} \right)+2k\pi ,k\in \mathbb{N} \\
\end{align}$
Taking cos on both sides, we get
$\cos \alpha =\left( \dfrac{xy}{2}-\sqrt{1-{{x}^{2}}}\sqrt{1-\dfrac{{{y}^{2}}}{4}} \right)$, which is the same as obtained above. Hence proceeding as above, we get option [c] is correct.
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Why is insulin not administered orally to a diabetic class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

The total number of isomers considering both the structural class 12 chemistry CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
