
If we have an expression as $\dfrac{1}{a}+\dfrac{1}{a-b}+\dfrac{1}{c}+\dfrac{1}{c-b}=0$ and $a+c\ne b$ then $a$, $b$, $c$ are in
(A). A.P
(B). H.P
(C). G.P
(D). None of these
Answer
569.1k+ views
Hint: We will first simplify the given equation so that the terms having relation between the variables in L.H.S and the remaining are in R.H.S. Now we will consider the L.H.S part and take the condition if $a$, $b$, $c$ in A.P and calculate the value of $b$. After getting the value of $b$ we will substitute the value of $b$ in the L.H.S and check whether the result is equal to R.H.S or not. Further, we will do the same process for remaining options like H.P and G.P and check whether the value is equal to R.H.S are not.
Complete step-by-step solution:
Given that,
$\dfrac{1}{a}+\dfrac{1}{a-b}+\dfrac{1}{c}+\dfrac{1}{c-b}=0$
Simplifying the above equation, then we will get
$\begin{align}
& \Rightarrow -\dfrac{1}{a-b}-\dfrac{1}{c-b}=\dfrac{1}{a}+\dfrac{1}{c} \\
& \Rightarrow \dfrac{1}{b-a}+\dfrac{1}{b-c}=\dfrac{1}{a}+\dfrac{1}{c} \\
\end{align}$
Consider the L.H.S part L.H.S $=\dfrac{1}{b-a}+\dfrac{1}{b-c}$.
If $a$, $b$, $c$ are in A.P, then common difference is given by $d=b-a=c-b$.
Now substituting the value $b-a=c-b$ in L.H.S, then we will get
$\begin{align}
& \dfrac{1}{b-a}+\dfrac{1}{b-c}=\dfrac{1}{c-b}+\dfrac{1}{b-c} \\
& \Rightarrow \dfrac{1}{b-a}+\dfrac{1}{b-c}=\dfrac{1}{c-b}-\dfrac{1}{c-b} \\
& \Rightarrow \dfrac{1}{b-a}+\dfrac{1}{b-c}=0 \\
\end{align}$
$\therefore $L.H.S $\ne $ R.H.S i.e. $a$, $b$, $c$ are not in A.P.
If $a$, $b$, $c$ are in H.P, then we must have $\dfrac{2}{b}=\dfrac{1}{a}+\dfrac{1}{c}$.
$\begin{align}
& \Rightarrow \dfrac{2}{b}=\dfrac{c+a}{ac} \\
& \Rightarrow 2ac=(c+a)b \\
& \Rightarrow b=\dfrac{2ac}{c+a} \\
\end{align}$
Substituting the $b$ value in L.H.S, then we will get
$\begin{align}
& \dfrac{1}{b-a}+\dfrac{1}{b-c}=\dfrac{1}{\dfrac{2ac}{c+a}-a}+\dfrac{1}{\dfrac{2ac}{c+a}-c} \\
& \Rightarrow \dfrac{1}{b-a}+\dfrac{1}{b-c}=\dfrac{1}{\dfrac{2ac-(c+a)a}{c+a}}+\dfrac{1}{\dfrac{2ac-(c+a)c}{c+a}} \\
& \Rightarrow \dfrac{1}{b-a}+\dfrac{1}{b-c}=\dfrac{c+a}{a(2c-(c+a))}+\dfrac{c+a}{c(2a-(c+a))} \\
\end{align}$
Taking $c+a$ common in the above equation, then we will get
$\Rightarrow \dfrac{1}{b-a}+\dfrac{1}{b-c}=(c+a)\left[ \dfrac{1}{a(c-a)}+\dfrac{1}{c(a-c)} \right]$
Now multiply minus to the term $\left( a-c \right)$ in the above equation, then we will get
$\Rightarrow \dfrac{1}{b-a}+\dfrac{1}{b-c}=(c+a)\left[ \dfrac{1}{a(c-a)}-\dfrac{1}{c(c-a)} \right]$
Taking $\left( c-a \right)$ common from the above equation, then we will get
$\Rightarrow \dfrac{1}{b-a}+\dfrac{1}{b-c}=\dfrac{(c+a)}{(c-a)}\left[ \dfrac{1}{a}-\dfrac{1}{c} \right]$
Simplifying the above equation, then we will have
$\begin{align}
& \Rightarrow \dfrac{1}{b-a}+\dfrac{1}{b-c}=\dfrac{(c+a)}{(c-a)}\left[ \dfrac{c-a}{ac} \right] \\
& \Rightarrow \dfrac{1}{b-a}+\dfrac{1}{b-c}=\dfrac{c+a}{ac} \\
& \Rightarrow \dfrac{1}{b-a}+\dfrac{1}{b-c}=\dfrac{c}{ac}+\dfrac{a}{ac} \\
& \Rightarrow \dfrac{1}{b-a}+\dfrac{1}{b-c}=\dfrac{1}{a}+\dfrac{1}{c} \\
\end{align}$
Here we got L.H.S $=$ R.H.S. So that we can write $a$, $b$, $c$ are H.P.
Note: For this problem we got the answer at the second option. So, we will terminate the problem. If you do not get the answer in the second option, then you must go for the third option by using the condition $b=\sqrt{ac}$.
Complete step-by-step solution:
Given that,
$\dfrac{1}{a}+\dfrac{1}{a-b}+\dfrac{1}{c}+\dfrac{1}{c-b}=0$
Simplifying the above equation, then we will get
$\begin{align}
& \Rightarrow -\dfrac{1}{a-b}-\dfrac{1}{c-b}=\dfrac{1}{a}+\dfrac{1}{c} \\
& \Rightarrow \dfrac{1}{b-a}+\dfrac{1}{b-c}=\dfrac{1}{a}+\dfrac{1}{c} \\
\end{align}$
Consider the L.H.S part L.H.S $=\dfrac{1}{b-a}+\dfrac{1}{b-c}$.
If $a$, $b$, $c$ are in A.P, then common difference is given by $d=b-a=c-b$.
Now substituting the value $b-a=c-b$ in L.H.S, then we will get
$\begin{align}
& \dfrac{1}{b-a}+\dfrac{1}{b-c}=\dfrac{1}{c-b}+\dfrac{1}{b-c} \\
& \Rightarrow \dfrac{1}{b-a}+\dfrac{1}{b-c}=\dfrac{1}{c-b}-\dfrac{1}{c-b} \\
& \Rightarrow \dfrac{1}{b-a}+\dfrac{1}{b-c}=0 \\
\end{align}$
$\therefore $L.H.S $\ne $ R.H.S i.e. $a$, $b$, $c$ are not in A.P.
If $a$, $b$, $c$ are in H.P, then we must have $\dfrac{2}{b}=\dfrac{1}{a}+\dfrac{1}{c}$.
$\begin{align}
& \Rightarrow \dfrac{2}{b}=\dfrac{c+a}{ac} \\
& \Rightarrow 2ac=(c+a)b \\
& \Rightarrow b=\dfrac{2ac}{c+a} \\
\end{align}$
Substituting the $b$ value in L.H.S, then we will get
$\begin{align}
& \dfrac{1}{b-a}+\dfrac{1}{b-c}=\dfrac{1}{\dfrac{2ac}{c+a}-a}+\dfrac{1}{\dfrac{2ac}{c+a}-c} \\
& \Rightarrow \dfrac{1}{b-a}+\dfrac{1}{b-c}=\dfrac{1}{\dfrac{2ac-(c+a)a}{c+a}}+\dfrac{1}{\dfrac{2ac-(c+a)c}{c+a}} \\
& \Rightarrow \dfrac{1}{b-a}+\dfrac{1}{b-c}=\dfrac{c+a}{a(2c-(c+a))}+\dfrac{c+a}{c(2a-(c+a))} \\
\end{align}$
Taking $c+a$ common in the above equation, then we will get
$\Rightarrow \dfrac{1}{b-a}+\dfrac{1}{b-c}=(c+a)\left[ \dfrac{1}{a(c-a)}+\dfrac{1}{c(a-c)} \right]$
Now multiply minus to the term $\left( a-c \right)$ in the above equation, then we will get
$\Rightarrow \dfrac{1}{b-a}+\dfrac{1}{b-c}=(c+a)\left[ \dfrac{1}{a(c-a)}-\dfrac{1}{c(c-a)} \right]$
Taking $\left( c-a \right)$ common from the above equation, then we will get
$\Rightarrow \dfrac{1}{b-a}+\dfrac{1}{b-c}=\dfrac{(c+a)}{(c-a)}\left[ \dfrac{1}{a}-\dfrac{1}{c} \right]$
Simplifying the above equation, then we will have
$\begin{align}
& \Rightarrow \dfrac{1}{b-a}+\dfrac{1}{b-c}=\dfrac{(c+a)}{(c-a)}\left[ \dfrac{c-a}{ac} \right] \\
& \Rightarrow \dfrac{1}{b-a}+\dfrac{1}{b-c}=\dfrac{c+a}{ac} \\
& \Rightarrow \dfrac{1}{b-a}+\dfrac{1}{b-c}=\dfrac{c}{ac}+\dfrac{a}{ac} \\
& \Rightarrow \dfrac{1}{b-a}+\dfrac{1}{b-c}=\dfrac{1}{a}+\dfrac{1}{c} \\
\end{align}$
Here we got L.H.S $=$ R.H.S. So that we can write $a$, $b$, $c$ are H.P.
Note: For this problem we got the answer at the second option. So, we will terminate the problem. If you do not get the answer in the second option, then you must go for the third option by using the condition $b=\sqrt{ac}$.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

