
If we have $\alpha ,\beta ,\gamma ,\delta $ are the roots of equation \[{{x}^{4}}+a{{x}^{3}}+b{{x}^{2}}+cx+d+e=0\], find the value of $\sum{{{\alpha }^{2}}\beta }$.
Answer
569.1k+ views
Hint: Here we are given an equation of degree four, thus having our roots. We will find the sum and product of roots in terms of coefficients of the equation to find desired results. For equation of degree four, \[{{x}^{4}}+a{{x}^{3}}+b{{x}^{2}}+cx+d+e=0\], sum of roots is given as –
$\alpha +\beta +\gamma +\delta =-\dfrac{b}{a}$ .
Product of roots is given as –
$\alpha \beta \gamma \delta =\dfrac{e}{a}$.
Also, $\alpha \beta +\beta \gamma +\gamma \delta +\alpha \gamma +\alpha \delta +\beta \delta =\dfrac{c}{a}$ and
$\alpha \beta \gamma +\alpha \gamma \delta +\alpha \beta \delta +\gamma \beta \delta =-\dfrac{d}{a}$.
We will use these formulas for finding $\sum{{{\alpha }^{2}}\beta }$.
Complete step-by-step solution
Before applying direct formulas and jumping to answer, let us first understand the basic formulas for ${{n}^{th}}$ polynomial.
For a polynomial of degree $n$, let roots of equation are $\alpha ,{{\alpha }_{1}},{{\alpha }_{2}},...,{{\alpha }_{n}}$.
Equation in general form is given by –
$f\left( x \right)={{a}_{0}}{{x}^{n}}+{{a}_{1}}{{x}^{n-1}}+{{a}_{2}}{{x}^{n-2}}+...+{{a}_{n-1}}x+{{a}_{n}}=0$
Then,
Sum of roots, $\alpha +{{\alpha }_{1}}+{{\alpha }_{2}}+...+{{\alpha }_{n}}=\dfrac{-coefficient~~of~~{{x}^{n-1}}}{coefficient~~of~~{{x}^{n}}}$
Also, ${{\alpha }_{1}}{{\alpha }_{2}}+{{\alpha }_{1}}{{\alpha }_{3}}...={{\left( -1 \right)}^{2}}\dfrac{coefficient~~of~~{{x}^{n-2}}}{coefficient~~of~~{{x}^{n}}}$
Similarly, other formulas are:-
${{\alpha }_{1}}{{\alpha }_{2}}{{\alpha }_{3}}+{{\alpha }_{2}}{{\alpha }_{3}}{{\alpha }_{4}}...={{\left( -1 \right)}^{3}}\dfrac{coefficient~~of~~{{x}^{n-3}}}{coefficient~~of~~{{x}^{n}}}$
\[{{\alpha }_{1}}{{\alpha }_{2}}{{\alpha }_{3}}{{\alpha }_{4}}...{{\alpha }_{n}}={{\left( -1 \right)}^{n}}\dfrac{constant~~term}{coefficient~~of~~{{x}^{n}}}\]
Comparing general formulas by the general equation of degree four, \[{{x}^{4}}+a{{x}^{3}}+b{{x}^{2}}+cx+d+e=0\] having roots $\alpha ,\beta ,\gamma ,\delta $ as roots:
\[\begin{align}
& \alpha +\beta +\gamma +\delta =-\dfrac{b}{a} \\
& \alpha \beta +\beta \gamma +\gamma \delta +\alpha \gamma +\alpha \delta +\beta \delta =\dfrac{c}{a} \\
& \alpha \beta \gamma +\alpha \gamma \delta +\alpha \beta \delta +\gamma \beta \delta =-\dfrac{d}{a} \\
& \alpha \beta \gamma \delta =\dfrac{e}{a} \\
\end{align}\]
We are given the equation, \[{{x}^{4}}+a{{x}^{3}}+b{{x}^{2}}+cx+d+e=0\]. Comparing with above formulas we get –
\[\begin{align}
& \alpha +\beta +\gamma +\delta =-a~~~~~~~~~~~~~~~~~~~~~~~~~~~~...\left( 1 \right) \\
& \alpha \beta +\beta \gamma +\gamma \delta +\alpha \gamma +\alpha \delta +\beta \delta =b~~~~~...\left( 2 \right) \\
& \alpha \beta \gamma +\alpha \gamma \delta +\alpha \beta \delta +\gamma \beta \delta =-c~~~~~~~~~~~~...\left( 3 \right) \\
& \alpha \beta \gamma \delta =e \\
\end{align}\]
On multiplying $\left( 1 \right)$ and $\left( 2 \right)$, we get –
\[\begin{align}
& \left( \alpha +\beta +\gamma +\delta \right)\left( \alpha \beta +\beta \gamma +\gamma \delta +\alpha \gamma +\alpha \delta +\beta \delta \right)=-ab \\
& \Rightarrow {{\alpha }^{2}}\beta +\alpha {{\beta }^{2}}+\alpha \beta \gamma +\alpha \beta \delta +\alpha \beta \gamma +{{\beta }^{2}}\gamma +\beta {{\gamma }^{2}}+\beta \gamma \delta +\alpha \gamma \delta +\beta \gamma \delta +{{\gamma }^{2}}\delta +\gamma {{\delta }^{2}}+ \\
& {{\alpha }^{2}}\gamma +\alpha \beta \gamma +\alpha {{\gamma }^{2}}+\alpha \gamma \delta +{{\alpha }^{2}}\delta +\alpha \beta \delta +\alpha \gamma \delta +\alpha {{\delta }^{2}}+\alpha \beta \delta +{{\beta }^{2}}\delta +\gamma \beta \delta +\beta {{\delta }^{2}}=-ab \\
\end{align}\]
Rearranging the terms, we get –
\[\begin{align}
& {{\alpha }^{2}}\beta +\alpha {{\beta }^{2}}+{{\beta }^{2}}\gamma +\beta {{\gamma }^{2}}+{{\gamma }^{2}}\delta +\gamma {{\delta }^{2}}+{{\alpha }^{2}}\gamma +\alpha {{\gamma }^{2}}+{{\alpha }^{2}}\delta +\alpha {{\delta }^{2}}+{{\beta }^{2}}\delta +\beta {{\delta }^{2}}+ \\
& 3\left( \alpha \beta \gamma +\beta \gamma \delta +\alpha \beta \delta +\beta \gamma \delta \right)=-ab \\
\end{align}\]
We can write the first twelve terms by $\sum{{{\alpha }^{2}}\beta }$. Hence we get –
$\sum{{{\alpha }^{2}}\beta }+3\left( \alpha \beta \gamma +\beta \gamma \delta +\alpha \beta \delta +\beta \gamma \delta \right)=-ab$
From equation (3), we can clearly see that we can directly put the value of $-c$ in above equation. We get –
\[\begin{align}
& \sum{{{\alpha }^{2}}\beta }-3c=-ab \\
& \Rightarrow \sum{{{\alpha }^{2}}\beta }=3c-ab \\
\end{align}\]
Hence, we have found our required answer, which is, \[\sum{{{\alpha }^{2}}\beta }=3c-ab\].
Note: Students should take care of signs the most. Mistakes can be made while taking positive or negative coefficients. Easy way to remember the product of roots is that we take the positive value of the coefficient of the constant term in even polynomials and the negative value of the coefficient of the constant term in odd polynomials. As there are a lot of terms in the equation, students should do it carefully and do not skip any term. Always remember, we can check it by looking at the symmetry of terms.
$\alpha +\beta +\gamma +\delta =-\dfrac{b}{a}$ .
Product of roots is given as –
$\alpha \beta \gamma \delta =\dfrac{e}{a}$.
Also, $\alpha \beta +\beta \gamma +\gamma \delta +\alpha \gamma +\alpha \delta +\beta \delta =\dfrac{c}{a}$ and
$\alpha \beta \gamma +\alpha \gamma \delta +\alpha \beta \delta +\gamma \beta \delta =-\dfrac{d}{a}$.
We will use these formulas for finding $\sum{{{\alpha }^{2}}\beta }$.
Complete step-by-step solution
Before applying direct formulas and jumping to answer, let us first understand the basic formulas for ${{n}^{th}}$ polynomial.
For a polynomial of degree $n$, let roots of equation are $\alpha ,{{\alpha }_{1}},{{\alpha }_{2}},...,{{\alpha }_{n}}$.
Equation in general form is given by –
$f\left( x \right)={{a}_{0}}{{x}^{n}}+{{a}_{1}}{{x}^{n-1}}+{{a}_{2}}{{x}^{n-2}}+...+{{a}_{n-1}}x+{{a}_{n}}=0$
Then,
Sum of roots, $\alpha +{{\alpha }_{1}}+{{\alpha }_{2}}+...+{{\alpha }_{n}}=\dfrac{-coefficient~~of~~{{x}^{n-1}}}{coefficient~~of~~{{x}^{n}}}$
Also, ${{\alpha }_{1}}{{\alpha }_{2}}+{{\alpha }_{1}}{{\alpha }_{3}}...={{\left( -1 \right)}^{2}}\dfrac{coefficient~~of~~{{x}^{n-2}}}{coefficient~~of~~{{x}^{n}}}$
Similarly, other formulas are:-
${{\alpha }_{1}}{{\alpha }_{2}}{{\alpha }_{3}}+{{\alpha }_{2}}{{\alpha }_{3}}{{\alpha }_{4}}...={{\left( -1 \right)}^{3}}\dfrac{coefficient~~of~~{{x}^{n-3}}}{coefficient~~of~~{{x}^{n}}}$
\[{{\alpha }_{1}}{{\alpha }_{2}}{{\alpha }_{3}}{{\alpha }_{4}}...{{\alpha }_{n}}={{\left( -1 \right)}^{n}}\dfrac{constant~~term}{coefficient~~of~~{{x}^{n}}}\]
Comparing general formulas by the general equation of degree four, \[{{x}^{4}}+a{{x}^{3}}+b{{x}^{2}}+cx+d+e=0\] having roots $\alpha ,\beta ,\gamma ,\delta $ as roots:
\[\begin{align}
& \alpha +\beta +\gamma +\delta =-\dfrac{b}{a} \\
& \alpha \beta +\beta \gamma +\gamma \delta +\alpha \gamma +\alpha \delta +\beta \delta =\dfrac{c}{a} \\
& \alpha \beta \gamma +\alpha \gamma \delta +\alpha \beta \delta +\gamma \beta \delta =-\dfrac{d}{a} \\
& \alpha \beta \gamma \delta =\dfrac{e}{a} \\
\end{align}\]
We are given the equation, \[{{x}^{4}}+a{{x}^{3}}+b{{x}^{2}}+cx+d+e=0\]. Comparing with above formulas we get –
\[\begin{align}
& \alpha +\beta +\gamma +\delta =-a~~~~~~~~~~~~~~~~~~~~~~~~~~~~...\left( 1 \right) \\
& \alpha \beta +\beta \gamma +\gamma \delta +\alpha \gamma +\alpha \delta +\beta \delta =b~~~~~...\left( 2 \right) \\
& \alpha \beta \gamma +\alpha \gamma \delta +\alpha \beta \delta +\gamma \beta \delta =-c~~~~~~~~~~~~...\left( 3 \right) \\
& \alpha \beta \gamma \delta =e \\
\end{align}\]
On multiplying $\left( 1 \right)$ and $\left( 2 \right)$, we get –
\[\begin{align}
& \left( \alpha +\beta +\gamma +\delta \right)\left( \alpha \beta +\beta \gamma +\gamma \delta +\alpha \gamma +\alpha \delta +\beta \delta \right)=-ab \\
& \Rightarrow {{\alpha }^{2}}\beta +\alpha {{\beta }^{2}}+\alpha \beta \gamma +\alpha \beta \delta +\alpha \beta \gamma +{{\beta }^{2}}\gamma +\beta {{\gamma }^{2}}+\beta \gamma \delta +\alpha \gamma \delta +\beta \gamma \delta +{{\gamma }^{2}}\delta +\gamma {{\delta }^{2}}+ \\
& {{\alpha }^{2}}\gamma +\alpha \beta \gamma +\alpha {{\gamma }^{2}}+\alpha \gamma \delta +{{\alpha }^{2}}\delta +\alpha \beta \delta +\alpha \gamma \delta +\alpha {{\delta }^{2}}+\alpha \beta \delta +{{\beta }^{2}}\delta +\gamma \beta \delta +\beta {{\delta }^{2}}=-ab \\
\end{align}\]
Rearranging the terms, we get –
\[\begin{align}
& {{\alpha }^{2}}\beta +\alpha {{\beta }^{2}}+{{\beta }^{2}}\gamma +\beta {{\gamma }^{2}}+{{\gamma }^{2}}\delta +\gamma {{\delta }^{2}}+{{\alpha }^{2}}\gamma +\alpha {{\gamma }^{2}}+{{\alpha }^{2}}\delta +\alpha {{\delta }^{2}}+{{\beta }^{2}}\delta +\beta {{\delta }^{2}}+ \\
& 3\left( \alpha \beta \gamma +\beta \gamma \delta +\alpha \beta \delta +\beta \gamma \delta \right)=-ab \\
\end{align}\]
We can write the first twelve terms by $\sum{{{\alpha }^{2}}\beta }$. Hence we get –
$\sum{{{\alpha }^{2}}\beta }+3\left( \alpha \beta \gamma +\beta \gamma \delta +\alpha \beta \delta +\beta \gamma \delta \right)=-ab$
From equation (3), we can clearly see that we can directly put the value of $-c$ in above equation. We get –
\[\begin{align}
& \sum{{{\alpha }^{2}}\beta }-3c=-ab \\
& \Rightarrow \sum{{{\alpha }^{2}}\beta }=3c-ab \\
\end{align}\]
Hence, we have found our required answer, which is, \[\sum{{{\alpha }^{2}}\beta }=3c-ab\].
Note: Students should take care of signs the most. Mistakes can be made while taking positive or negative coefficients. Easy way to remember the product of roots is that we take the positive value of the coefficient of the constant term in even polynomials and the negative value of the coefficient of the constant term in odd polynomials. As there are a lot of terms in the equation, students should do it carefully and do not skip any term. Always remember, we can check it by looking at the symmetry of terms.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

