
If we have a variable as $x=\tan \dfrac{\pi }{18}$ then find the value of $3{{x}^{6}}-27{{x}^{4}}+33{{x}^{2}}$.
A. 1
B. 2
C. $3\sqrt{3}$
D. $\dfrac{1}{3}$
Answer
569.4k+ views
Hint: We first use the multiple angle formula of trigonometry for $\tan \left( 3\alpha \right)=\dfrac{3\tan \alpha -{{\tan }^{3}}\alpha }{1-3{{\tan }^{2}}\alpha }$. We put the value of $\alpha =\dfrac{\pi }{18}$ in the equation to find an equation of $x=\tan \dfrac{\pi }{18}$. We solve the equation and then take the square of that. We expand the square form to find the value of the problem $3{{x}^{6}}-27{{x}^{4}}+33{{x}^{2}}$.
Complete step-by-step solution:
We have the trigonometric multiple angle formula of $\tan \left( 3\alpha \right)=\dfrac{3\tan \alpha -{{\tan }^{3}}\alpha }{1-3{{\tan }^{2}}\alpha }$.
We put the value $\alpha =\dfrac{\pi }{18}$ in the equation. Also, we use the given identity $x=\tan \dfrac{\pi }{18}$. We also have the identity value of $\dfrac{1}{\sqrt{3}}=\tan \dfrac{\pi }{6}$.
$\begin{align}
& \tan \left( \dfrac{3\pi }{18} \right)=\dfrac{3\tan \left( \dfrac{\pi }{18} \right)-{{\tan }^{3}}\left( \dfrac{\pi }{18} \right)}{1-3{{\tan }^{2}}\left( \dfrac{\pi }{18} \right)} \\
& \Rightarrow \dfrac{1}{\sqrt{3}}=\dfrac{3x-{{x}^{3}}}{1-3{{x}^{2}}} \\
\end{align}$
We now solve the equation and get $3{{x}^{2}}-1=\sqrt{3}x\left( {{x}^{2}}-3 \right)$.
Now we take square both sides of the equation and get ${{\left( 3{{x}^{2}}-1 \right)}^{2}}=3{{x}^{2}}{{\left( {{x}^{2}}-3 \right)}^{2}}$.
We break the squares using the formula of ${{\left( a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}}$.
$\begin{align}
& {{\left( 3{{x}^{2}}-1 \right)}^{2}}=3{{x}^{2}}{{\left( {{x}^{2}}-3 \right)}^{2}} \\
& \Rightarrow 9{{x}^{4}}+1-6{{x}^{2}}=3{{x}^{2}}\left( {{x}^{4}}+9-6{{x}^{2}} \right) \\
\end{align}$
Now we solve the rest of the equation and get
$\begin{align}
& 9{{x}^{4}}+1-6{{x}^{2}}=3{{x}^{2}}\left( {{x}^{4}}+9-6{{x}^{2}} \right) \\
& \Rightarrow 9{{x}^{4}}+18{{x}^{4}}+1-6{{x}^{2}}-27{{x}^{2}}-3{{x}^{6}}=0 \\
& \Rightarrow 3{{x}^{6}}-27{{x}^{4}}+33{{x}^{2}}=1 \\
\end{align}$
Therefore, the value of $3{{x}^{6}}-27{{x}^{4}}+33{{x}^{2}}$ is 1. The correct option is A.
Note: Another way of solving would have been to try and find the solution going from $a=\tan \dfrac{\pi }{9}$ and using the formula of $\tan \left( 2\alpha \right)$. The process would have been more difficult as we need to use $\tan \dfrac{\pi }{3}$ and $\tan \dfrac{\pi }{6}$ to find the value of $a=\tan \dfrac{\pi }{9}$.
Complete step-by-step solution:
We have the trigonometric multiple angle formula of $\tan \left( 3\alpha \right)=\dfrac{3\tan \alpha -{{\tan }^{3}}\alpha }{1-3{{\tan }^{2}}\alpha }$.
We put the value $\alpha =\dfrac{\pi }{18}$ in the equation. Also, we use the given identity $x=\tan \dfrac{\pi }{18}$. We also have the identity value of $\dfrac{1}{\sqrt{3}}=\tan \dfrac{\pi }{6}$.
$\begin{align}
& \tan \left( \dfrac{3\pi }{18} \right)=\dfrac{3\tan \left( \dfrac{\pi }{18} \right)-{{\tan }^{3}}\left( \dfrac{\pi }{18} \right)}{1-3{{\tan }^{2}}\left( \dfrac{\pi }{18} \right)} \\
& \Rightarrow \dfrac{1}{\sqrt{3}}=\dfrac{3x-{{x}^{3}}}{1-3{{x}^{2}}} \\
\end{align}$
We now solve the equation and get $3{{x}^{2}}-1=\sqrt{3}x\left( {{x}^{2}}-3 \right)$.
Now we take square both sides of the equation and get ${{\left( 3{{x}^{2}}-1 \right)}^{2}}=3{{x}^{2}}{{\left( {{x}^{2}}-3 \right)}^{2}}$.
We break the squares using the formula of ${{\left( a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}}$.
$\begin{align}
& {{\left( 3{{x}^{2}}-1 \right)}^{2}}=3{{x}^{2}}{{\left( {{x}^{2}}-3 \right)}^{2}} \\
& \Rightarrow 9{{x}^{4}}+1-6{{x}^{2}}=3{{x}^{2}}\left( {{x}^{4}}+9-6{{x}^{2}} \right) \\
\end{align}$
Now we solve the rest of the equation and get
$\begin{align}
& 9{{x}^{4}}+1-6{{x}^{2}}=3{{x}^{2}}\left( {{x}^{4}}+9-6{{x}^{2}} \right) \\
& \Rightarrow 9{{x}^{4}}+18{{x}^{4}}+1-6{{x}^{2}}-27{{x}^{2}}-3{{x}^{6}}=0 \\
& \Rightarrow 3{{x}^{6}}-27{{x}^{4}}+33{{x}^{2}}=1 \\
\end{align}$
Therefore, the value of $3{{x}^{6}}-27{{x}^{4}}+33{{x}^{2}}$ is 1. The correct option is A.
Note: Another way of solving would have been to try and find the solution going from $a=\tan \dfrac{\pi }{9}$ and using the formula of $\tan \left( 2\alpha \right)$. The process would have been more difficult as we need to use $\tan \dfrac{\pi }{3}$ and $\tan \dfrac{\pi }{6}$ to find the value of $a=\tan \dfrac{\pi }{9}$.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

