
If we have a trigonometric function as $f(x)=\sin \left[ {{\pi }^{2}} \right]x+\cos \left[ -{{\pi }^{2}} \right]x$ , where [ . ] is greatest integer function, then $f'(x)$ is
( a ) 9sinx + 9cosx
( b ) 9cos9x – 10sin10x
( c ) 0
( d ) -1
Answer
577.2k+ views
Hint: First we will find the values of $\left[ {{\pi }^{2}} \right]$ and $\left[ -{{\pi }^{2}} \right]$, then substitute the values of $\left[ {{\pi }^{2}} \right]$ and $\left[ -{{\pi }^{2}} \right]$ in function $f(x)=\sin \left[ {{\pi }^{2}} \right]x+\cos \left[ -{{\pi }^{2}} \right]x$. Then using chain rule of differentiation we will find out the value of f ’ ( x ).
Complete step-by-step solution:
Before we start the question, let us see what the greatest integer function is and how do we find the value of the greatest integer function.
Let us see what is the greatest integer function and what are its properties.
Function y = [ x ] is called greatest integer function which means the greatest integer less than or equals to x. also, if n belongs to set of integer, then y = [ x ] = n if $n\le x< n+1$ that is $x\in [n,n+1)$ .
For example if we put x = -3.1 in y = [ x ], then y = - 4 and if we put x = 0.2 in y = [ x ], then y = 0.
Now, we know that ${{\pi }^{2}}={{(3.14)}^{2}}=9.85$ and $-{{\pi }^{2}}=-{{(3.14)}^{2}}=-9.85$.
So, value of $\left[ {{\pi }^{2}} \right]=\left[ 9.85 \right]=9$ and $\left[ -{{\pi }^{2}} \right]=\left[ -9.85 \right]=-10$.
So, we can re – write function $f(x)=\sin \left[ {{\pi }^{2}} \right]x+\cos \left[ -{{\pi }^{2}} \right]x$as $f(x)=\sin 9x+\cos (-10)x$
Also, cos ( - x ) =cos x.
So, $f(x)=\sin 9x+\cos 10x$
So, $f'(x)=\dfrac{d}{dx}\left( \sin 9x+\cos 10x \right)$
We know that, \[\dfrac{d}{dx}\left( A(x)+B(x) \right)=\dfrac{d}{dx}A(x)+\dfrac{d}{dx}B(x)\]
So, \[\dfrac{d}{dx}\left( \sin 9x+\cos 10x \right)=\dfrac{d}{dx}(\sin 9x)+\dfrac{d}{dx}(\cos 10x)\]
We know that $\dfrac{d}{dx}(\sin ax)=a\cdot \cos ax$ and \[\dfrac{d}{dx}(cosax)=-a\sin ax\].
So, $\dfrac{d}{dx}(\sin 9x)=9\cdot \cos 9x$ and \[\dfrac{d}{dx}(cos10x)=-10\sin 10x\].
$f'(x)=\dfrac{d}{dx}\left( \sin 9x+\cos 10x \right)=9\cos 9x10\sin 10x$
Hence, option ( b ) is true.
Note: One must know the definition of greatest integer function and how to find the value of greatest integer function for any real value of x. Always remember that $\dfrac{d}{dx}(\sin ax)=a\cdot \cos ax$ and \[\dfrac{d}{dx}(cosax)=-a\sin ax\] and \[\dfrac{d}{dx}\left( A(x)+B(x) \right)=\dfrac{d}{dx}A(x)+\dfrac{d}{dx}B(x)\].
Complete step-by-step solution:
Before we start the question, let us see what the greatest integer function is and how do we find the value of the greatest integer function.
Let us see what is the greatest integer function and what are its properties.
Function y = [ x ] is called greatest integer function which means the greatest integer less than or equals to x. also, if n belongs to set of integer, then y = [ x ] = n if $n\le x< n+1$ that is $x\in [n,n+1)$ .
For example if we put x = -3.1 in y = [ x ], then y = - 4 and if we put x = 0.2 in y = [ x ], then y = 0.
Now, we know that ${{\pi }^{2}}={{(3.14)}^{2}}=9.85$ and $-{{\pi }^{2}}=-{{(3.14)}^{2}}=-9.85$.
So, value of $\left[ {{\pi }^{2}} \right]=\left[ 9.85 \right]=9$ and $\left[ -{{\pi }^{2}} \right]=\left[ -9.85 \right]=-10$.
So, we can re – write function $f(x)=\sin \left[ {{\pi }^{2}} \right]x+\cos \left[ -{{\pi }^{2}} \right]x$as $f(x)=\sin 9x+\cos (-10)x$
Also, cos ( - x ) =cos x.
So, $f(x)=\sin 9x+\cos 10x$
So, $f'(x)=\dfrac{d}{dx}\left( \sin 9x+\cos 10x \right)$
We know that, \[\dfrac{d}{dx}\left( A(x)+B(x) \right)=\dfrac{d}{dx}A(x)+\dfrac{d}{dx}B(x)\]
So, \[\dfrac{d}{dx}\left( \sin 9x+\cos 10x \right)=\dfrac{d}{dx}(\sin 9x)+\dfrac{d}{dx}(\cos 10x)\]
We know that $\dfrac{d}{dx}(\sin ax)=a\cdot \cos ax$ and \[\dfrac{d}{dx}(cosax)=-a\sin ax\].
So, $\dfrac{d}{dx}(\sin 9x)=9\cdot \cos 9x$ and \[\dfrac{d}{dx}(cos10x)=-10\sin 10x\].
$f'(x)=\dfrac{d}{dx}\left( \sin 9x+\cos 10x \right)=9\cos 9x10\sin 10x$
Hence, option ( b ) is true.
Note: One must know the definition of greatest integer function and how to find the value of greatest integer function for any real value of x. Always remember that $\dfrac{d}{dx}(\sin ax)=a\cdot \cos ax$ and \[\dfrac{d}{dx}(cosax)=-a\sin ax\] and \[\dfrac{d}{dx}\left( A(x)+B(x) \right)=\dfrac{d}{dx}A(x)+\dfrac{d}{dx}B(x)\].
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

