
If we have a trigonometric expression as $\text{cosec}A+\sec A=\cos \text{ec}B\text{+}\sec B$, prove that: $\tan A\tan B=\cot \dfrac{A+B}{2}$
Answer
484.8k+ views
Hint: Here, we have been given that $\text{cosec}A+\sec A=\cos \text{ec}B\text{+}\sec B$ and we have to prove that $\tan A\tan B=\cot \dfrac{A+B}{2}$. For this, we will first change $\text{cosec}A+\sec A=\cos \text{ec}B\text{+}\sec B$ in the form of sin and cos by using $\cos \text{ec}x=\dfrac{1}{\sin x}$ and $\sec x=\dfrac{1}{\cos x}$. Then we will solve and cross multiply then the obtained equation so that it comes in linear form. Then we will separate the terms with sinAsinB and cosAcosB on different sides of the equal to sign. Then we will take both these in common so that we will get the difference of angles in sin and cos. Then we will use the formulas $\sin C-\sin D=2\cos \dfrac{C+D}{2}\sin \dfrac{C-D}{2}$ and $\cos C-\cos D=-2\sin \dfrac{C+D}{2}\sin \dfrac{C-D}{2}$ in the then obtained equation and then convert it in the form of tan and cot. Hence, we will get the required condition.
Complete step-by-step solution
Here, we have been given that $\text{cosec}A+\sec A=\cos \text{ec}B\text{+}\sec B$and we have to prove that $\tan A\tan B=\cot \dfrac{A+B}{2}$. For this, we convert $\text{cosec}A+\sec A=\cos \text{ec}B\text{+}\sec B$ in the form of sin and cos function first and then tan and cot and check if we get the required answer or not.
Now, we have:
$\text{cosec}A+\sec A=\cos \text{ec}B\text{+}\sec B$
Now we know that $\cos \text{ec}x=\dfrac{1}{\sin x}$ and $\sec x=\dfrac{1}{\cos x}$.
Thus, we get the above equation as:
$\begin{align}
& \text{cosec}A+\sec A=\cos \text{ec}B\text{+}\sec B \\
& \Rightarrow \dfrac{1}{\sin A}+\dfrac{1}{\cos A}=\dfrac{1}{\sin B}+\dfrac{1}{\cos B} \\
\end{align}$
Now, solving it, we get:
$\begin{align}
& \dfrac{1}{\sin A}+\dfrac{1}{\cos A}=\dfrac{1}{\sin B}+\dfrac{1}{\cos B} \\
& \Rightarrow \dfrac{\cos A+\sin A}{\sin A\cos A}=\dfrac{\cos B+\sin B}{\sin B\cos B} \\
\end{align}$
Now, cross multiplying the above obtained equation, we get:
$\begin{align}
& \dfrac{\cos A+\sin A}{\sin A\cos A}=\dfrac{\cos B+\sin B}{\sin B\cos B} \\
& \Rightarrow \left( \cos A+\sin A \right)\sin B\cos B=\left( \cos B+\sin B \right)\sin A\cos A \\
& \Rightarrow \cos A\sin B\cos B+\sin A\sin B\cos B=\sin A\cos A\cos B+\sin A\cos A\sin B \\
\end{align}$
Now, we can also write it as:
\[\begin{align}
& \cos A\sin B\cos B+\sin A\sin B\cos B=\sin A\cos A\cos B+\sin A\cos A\sin B \\
& \Rightarrow \cos A\sin B\cos B-\sin A\cos A\cos B=\sin A\cos A\sin B-\sin A\sin B\cos B \\
\end{align}\]
Now, taking cosAcosB common in the LHS and sinAsinB common in the RHS we get:
\[\begin{align}
& \cos A\sin B\cos B-\sin A\cos A\cos B=\sin A\cos A\sin B-\sin A\sin B\cos B \\
& \Rightarrow \cos A\cos B\left( \sin B-\sin A \right)=\sin A\sin B\left( \cos A-\cos B \right) \\
\end{align}\]
Now, we know that $\sin C-\sin D=2\cos \dfrac{C+D}{2}\sin \dfrac{C-D}{2}$ and $\cos C-\cos D=-2\sin \dfrac{C+D}{2}\sin \dfrac{C-D}{2}$
Hence, we get the above obtained equation as:
\[\begin{align}
& \cos A\cos B\left( \sin B-\sin A \right)=\sin A\sin B\left( \cos A-\cos B \right) \\
& \Rightarrow \cos A\cos B\left( 2\cos \dfrac{B+A}{2}\sin \dfrac{B-A}{2} \right)=\sin A\sin B\left( -2\sin \dfrac{A+B}{2}\sin \dfrac{A-B}{2} \right) \\
\end{align}\]
Now, solving this equation we get:
\[\begin{align}
& \cos A\cos B\left( 2\cos \dfrac{B+A}{2}\sin \dfrac{B-A}{2} \right)=\sin A\sin B\left( -2\sin \dfrac{A+B}{2}\sin \dfrac{A-B}{2} \right) \\
& \Rightarrow \cos A\cos B\left( 2\cos \dfrac{B+A}{2}\sin \dfrac{B-A}{2} \right)=\sin A\sin B\left( 2\sin \dfrac{A+B}{2}\sin \dfrac{B-A}{2} \right) \\
& \Rightarrow \cos A\cos B\cos \dfrac{A+B}{2}=\sin A\sin B\sin \dfrac{A+B}{2} \\
& \Rightarrow \dfrac{\cos \dfrac{A+B}{2}}{\sin \dfrac{A+B}{2}}=\dfrac{\sin A\sin B}{\cos A\cos B} \\
\end{align}\]
Hence, we get:
\[\begin{align}
& \dfrac{\cos \dfrac{A+B}{2}}{\sin \dfrac{A+B}{2}}=\dfrac{\sin A\sin B}{\cos A\cos B} \\
& \therefore \cot \dfrac{A+B}{2}=\tan A\tan B \\
\end{align}\]
Hence, the given condition in the question is proved.
Note: Some formulas as the sum or difference of sin and cos are given below which might come in handy:
1. $\sin C+\sin D=2\sin \dfrac{C+D}{2}\cos \dfrac{C-D}{2}$
2. $\sin C-\sin D=2\cos \dfrac{C+D}{2}\sin \dfrac{C-D}{2}$
3. $\cos C+\cos D=2\cos \dfrac{C+D}{2}\cos \dfrac{C-D}{2}$
4. $\cos C-\cos D=-2\sin \dfrac{C+D}{2}\sin \dfrac{C-D}{2}$
Complete step-by-step solution
Here, we have been given that $\text{cosec}A+\sec A=\cos \text{ec}B\text{+}\sec B$and we have to prove that $\tan A\tan B=\cot \dfrac{A+B}{2}$. For this, we convert $\text{cosec}A+\sec A=\cos \text{ec}B\text{+}\sec B$ in the form of sin and cos function first and then tan and cot and check if we get the required answer or not.
Now, we have:
$\text{cosec}A+\sec A=\cos \text{ec}B\text{+}\sec B$
Now we know that $\cos \text{ec}x=\dfrac{1}{\sin x}$ and $\sec x=\dfrac{1}{\cos x}$.
Thus, we get the above equation as:
$\begin{align}
& \text{cosec}A+\sec A=\cos \text{ec}B\text{+}\sec B \\
& \Rightarrow \dfrac{1}{\sin A}+\dfrac{1}{\cos A}=\dfrac{1}{\sin B}+\dfrac{1}{\cos B} \\
\end{align}$
Now, solving it, we get:
$\begin{align}
& \dfrac{1}{\sin A}+\dfrac{1}{\cos A}=\dfrac{1}{\sin B}+\dfrac{1}{\cos B} \\
& \Rightarrow \dfrac{\cos A+\sin A}{\sin A\cos A}=\dfrac{\cos B+\sin B}{\sin B\cos B} \\
\end{align}$
Now, cross multiplying the above obtained equation, we get:
$\begin{align}
& \dfrac{\cos A+\sin A}{\sin A\cos A}=\dfrac{\cos B+\sin B}{\sin B\cos B} \\
& \Rightarrow \left( \cos A+\sin A \right)\sin B\cos B=\left( \cos B+\sin B \right)\sin A\cos A \\
& \Rightarrow \cos A\sin B\cos B+\sin A\sin B\cos B=\sin A\cos A\cos B+\sin A\cos A\sin B \\
\end{align}$
Now, we can also write it as:
\[\begin{align}
& \cos A\sin B\cos B+\sin A\sin B\cos B=\sin A\cos A\cos B+\sin A\cos A\sin B \\
& \Rightarrow \cos A\sin B\cos B-\sin A\cos A\cos B=\sin A\cos A\sin B-\sin A\sin B\cos B \\
\end{align}\]
Now, taking cosAcosB common in the LHS and sinAsinB common in the RHS we get:
\[\begin{align}
& \cos A\sin B\cos B-\sin A\cos A\cos B=\sin A\cos A\sin B-\sin A\sin B\cos B \\
& \Rightarrow \cos A\cos B\left( \sin B-\sin A \right)=\sin A\sin B\left( \cos A-\cos B \right) \\
\end{align}\]
Now, we know that $\sin C-\sin D=2\cos \dfrac{C+D}{2}\sin \dfrac{C-D}{2}$ and $\cos C-\cos D=-2\sin \dfrac{C+D}{2}\sin \dfrac{C-D}{2}$
Hence, we get the above obtained equation as:
\[\begin{align}
& \cos A\cos B\left( \sin B-\sin A \right)=\sin A\sin B\left( \cos A-\cos B \right) \\
& \Rightarrow \cos A\cos B\left( 2\cos \dfrac{B+A}{2}\sin \dfrac{B-A}{2} \right)=\sin A\sin B\left( -2\sin \dfrac{A+B}{2}\sin \dfrac{A-B}{2} \right) \\
\end{align}\]
Now, solving this equation we get:
\[\begin{align}
& \cos A\cos B\left( 2\cos \dfrac{B+A}{2}\sin \dfrac{B-A}{2} \right)=\sin A\sin B\left( -2\sin \dfrac{A+B}{2}\sin \dfrac{A-B}{2} \right) \\
& \Rightarrow \cos A\cos B\left( 2\cos \dfrac{B+A}{2}\sin \dfrac{B-A}{2} \right)=\sin A\sin B\left( 2\sin \dfrac{A+B}{2}\sin \dfrac{B-A}{2} \right) \\
& \Rightarrow \cos A\cos B\cos \dfrac{A+B}{2}=\sin A\sin B\sin \dfrac{A+B}{2} \\
& \Rightarrow \dfrac{\cos \dfrac{A+B}{2}}{\sin \dfrac{A+B}{2}}=\dfrac{\sin A\sin B}{\cos A\cos B} \\
\end{align}\]
Hence, we get:
\[\begin{align}
& \dfrac{\cos \dfrac{A+B}{2}}{\sin \dfrac{A+B}{2}}=\dfrac{\sin A\sin B}{\cos A\cos B} \\
& \therefore \cot \dfrac{A+B}{2}=\tan A\tan B \\
\end{align}\]
Hence, the given condition in the question is proved.
Note: Some formulas as the sum or difference of sin and cos are given below which might come in handy:
1. $\sin C+\sin D=2\sin \dfrac{C+D}{2}\cos \dfrac{C-D}{2}$
2. $\sin C-\sin D=2\cos \dfrac{C+D}{2}\sin \dfrac{C-D}{2}$
3. $\cos C+\cos D=2\cos \dfrac{C+D}{2}\cos \dfrac{C-D}{2}$
4. $\cos C-\cos D=-2\sin \dfrac{C+D}{2}\sin \dfrac{C-D}{2}$
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Trending doubts
State and prove Bernoullis theorem class 11 physics CBSE

What is the difference between superposition and e class 11 physics CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells
