
If we have a trigonometric expression as $\text{cosec}A+\sec A=\cos \text{ec}B\text{+}\sec B$, prove that: $\tan A\tan B=\cot \dfrac{A+B}{2}$
Answer
557.7k+ views
Hint: Here, we have been given that $\text{cosec}A+\sec A=\cos \text{ec}B\text{+}\sec B$ and we have to prove that $\tan A\tan B=\cot \dfrac{A+B}{2}$. For this, we will first change $\text{cosec}A+\sec A=\cos \text{ec}B\text{+}\sec B$ in the form of sin and cos by using $\cos \text{ec}x=\dfrac{1}{\sin x}$ and $\sec x=\dfrac{1}{\cos x}$. Then we will solve and cross multiply then the obtained equation so that it comes in linear form. Then we will separate the terms with sinAsinB and cosAcosB on different sides of the equal to sign. Then we will take both these in common so that we will get the difference of angles in sin and cos. Then we will use the formulas $\sin C-\sin D=2\cos \dfrac{C+D}{2}\sin \dfrac{C-D}{2}$ and $\cos C-\cos D=-2\sin \dfrac{C+D}{2}\sin \dfrac{C-D}{2}$ in the then obtained equation and then convert it in the form of tan and cot. Hence, we will get the required condition.
Complete step-by-step solution
Here, we have been given that $\text{cosec}A+\sec A=\cos \text{ec}B\text{+}\sec B$and we have to prove that $\tan A\tan B=\cot \dfrac{A+B}{2}$. For this, we convert $\text{cosec}A+\sec A=\cos \text{ec}B\text{+}\sec B$ in the form of sin and cos function first and then tan and cot and check if we get the required answer or not.
Now, we have:
$\text{cosec}A+\sec A=\cos \text{ec}B\text{+}\sec B$
Now we know that $\cos \text{ec}x=\dfrac{1}{\sin x}$ and $\sec x=\dfrac{1}{\cos x}$.
Thus, we get the above equation as:
$\begin{align}
& \text{cosec}A+\sec A=\cos \text{ec}B\text{+}\sec B \\
& \Rightarrow \dfrac{1}{\sin A}+\dfrac{1}{\cos A}=\dfrac{1}{\sin B}+\dfrac{1}{\cos B} \\
\end{align}$
Now, solving it, we get:
$\begin{align}
& \dfrac{1}{\sin A}+\dfrac{1}{\cos A}=\dfrac{1}{\sin B}+\dfrac{1}{\cos B} \\
& \Rightarrow \dfrac{\cos A+\sin A}{\sin A\cos A}=\dfrac{\cos B+\sin B}{\sin B\cos B} \\
\end{align}$
Now, cross multiplying the above obtained equation, we get:
$\begin{align}
& \dfrac{\cos A+\sin A}{\sin A\cos A}=\dfrac{\cos B+\sin B}{\sin B\cos B} \\
& \Rightarrow \left( \cos A+\sin A \right)\sin B\cos B=\left( \cos B+\sin B \right)\sin A\cos A \\
& \Rightarrow \cos A\sin B\cos B+\sin A\sin B\cos B=\sin A\cos A\cos B+\sin A\cos A\sin B \\
\end{align}$
Now, we can also write it as:
\[\begin{align}
& \cos A\sin B\cos B+\sin A\sin B\cos B=\sin A\cos A\cos B+\sin A\cos A\sin B \\
& \Rightarrow \cos A\sin B\cos B-\sin A\cos A\cos B=\sin A\cos A\sin B-\sin A\sin B\cos B \\
\end{align}\]
Now, taking cosAcosB common in the LHS and sinAsinB common in the RHS we get:
\[\begin{align}
& \cos A\sin B\cos B-\sin A\cos A\cos B=\sin A\cos A\sin B-\sin A\sin B\cos B \\
& \Rightarrow \cos A\cos B\left( \sin B-\sin A \right)=\sin A\sin B\left( \cos A-\cos B \right) \\
\end{align}\]
Now, we know that $\sin C-\sin D=2\cos \dfrac{C+D}{2}\sin \dfrac{C-D}{2}$ and $\cos C-\cos D=-2\sin \dfrac{C+D}{2}\sin \dfrac{C-D}{2}$
Hence, we get the above obtained equation as:
\[\begin{align}
& \cos A\cos B\left( \sin B-\sin A \right)=\sin A\sin B\left( \cos A-\cos B \right) \\
& \Rightarrow \cos A\cos B\left( 2\cos \dfrac{B+A}{2}\sin \dfrac{B-A}{2} \right)=\sin A\sin B\left( -2\sin \dfrac{A+B}{2}\sin \dfrac{A-B}{2} \right) \\
\end{align}\]
Now, solving this equation we get:
\[\begin{align}
& \cos A\cos B\left( 2\cos \dfrac{B+A}{2}\sin \dfrac{B-A}{2} \right)=\sin A\sin B\left( -2\sin \dfrac{A+B}{2}\sin \dfrac{A-B}{2} \right) \\
& \Rightarrow \cos A\cos B\left( 2\cos \dfrac{B+A}{2}\sin \dfrac{B-A}{2} \right)=\sin A\sin B\left( 2\sin \dfrac{A+B}{2}\sin \dfrac{B-A}{2} \right) \\
& \Rightarrow \cos A\cos B\cos \dfrac{A+B}{2}=\sin A\sin B\sin \dfrac{A+B}{2} \\
& \Rightarrow \dfrac{\cos \dfrac{A+B}{2}}{\sin \dfrac{A+B}{2}}=\dfrac{\sin A\sin B}{\cos A\cos B} \\
\end{align}\]
Hence, we get:
\[\begin{align}
& \dfrac{\cos \dfrac{A+B}{2}}{\sin \dfrac{A+B}{2}}=\dfrac{\sin A\sin B}{\cos A\cos B} \\
& \therefore \cot \dfrac{A+B}{2}=\tan A\tan B \\
\end{align}\]
Hence, the given condition in the question is proved.
Note: Some formulas as the sum or difference of sin and cos are given below which might come in handy:
1. $\sin C+\sin D=2\sin \dfrac{C+D}{2}\cos \dfrac{C-D}{2}$
2. $\sin C-\sin D=2\cos \dfrac{C+D}{2}\sin \dfrac{C-D}{2}$
3. $\cos C+\cos D=2\cos \dfrac{C+D}{2}\cos \dfrac{C-D}{2}$
4. $\cos C-\cos D=-2\sin \dfrac{C+D}{2}\sin \dfrac{C-D}{2}$
Complete step-by-step solution
Here, we have been given that $\text{cosec}A+\sec A=\cos \text{ec}B\text{+}\sec B$and we have to prove that $\tan A\tan B=\cot \dfrac{A+B}{2}$. For this, we convert $\text{cosec}A+\sec A=\cos \text{ec}B\text{+}\sec B$ in the form of sin and cos function first and then tan and cot and check if we get the required answer or not.
Now, we have:
$\text{cosec}A+\sec A=\cos \text{ec}B\text{+}\sec B$
Now we know that $\cos \text{ec}x=\dfrac{1}{\sin x}$ and $\sec x=\dfrac{1}{\cos x}$.
Thus, we get the above equation as:
$\begin{align}
& \text{cosec}A+\sec A=\cos \text{ec}B\text{+}\sec B \\
& \Rightarrow \dfrac{1}{\sin A}+\dfrac{1}{\cos A}=\dfrac{1}{\sin B}+\dfrac{1}{\cos B} \\
\end{align}$
Now, solving it, we get:
$\begin{align}
& \dfrac{1}{\sin A}+\dfrac{1}{\cos A}=\dfrac{1}{\sin B}+\dfrac{1}{\cos B} \\
& \Rightarrow \dfrac{\cos A+\sin A}{\sin A\cos A}=\dfrac{\cos B+\sin B}{\sin B\cos B} \\
\end{align}$
Now, cross multiplying the above obtained equation, we get:
$\begin{align}
& \dfrac{\cos A+\sin A}{\sin A\cos A}=\dfrac{\cos B+\sin B}{\sin B\cos B} \\
& \Rightarrow \left( \cos A+\sin A \right)\sin B\cos B=\left( \cos B+\sin B \right)\sin A\cos A \\
& \Rightarrow \cos A\sin B\cos B+\sin A\sin B\cos B=\sin A\cos A\cos B+\sin A\cos A\sin B \\
\end{align}$
Now, we can also write it as:
\[\begin{align}
& \cos A\sin B\cos B+\sin A\sin B\cos B=\sin A\cos A\cos B+\sin A\cos A\sin B \\
& \Rightarrow \cos A\sin B\cos B-\sin A\cos A\cos B=\sin A\cos A\sin B-\sin A\sin B\cos B \\
\end{align}\]
Now, taking cosAcosB common in the LHS and sinAsinB common in the RHS we get:
\[\begin{align}
& \cos A\sin B\cos B-\sin A\cos A\cos B=\sin A\cos A\sin B-\sin A\sin B\cos B \\
& \Rightarrow \cos A\cos B\left( \sin B-\sin A \right)=\sin A\sin B\left( \cos A-\cos B \right) \\
\end{align}\]
Now, we know that $\sin C-\sin D=2\cos \dfrac{C+D}{2}\sin \dfrac{C-D}{2}$ and $\cos C-\cos D=-2\sin \dfrac{C+D}{2}\sin \dfrac{C-D}{2}$
Hence, we get the above obtained equation as:
\[\begin{align}
& \cos A\cos B\left( \sin B-\sin A \right)=\sin A\sin B\left( \cos A-\cos B \right) \\
& \Rightarrow \cos A\cos B\left( 2\cos \dfrac{B+A}{2}\sin \dfrac{B-A}{2} \right)=\sin A\sin B\left( -2\sin \dfrac{A+B}{2}\sin \dfrac{A-B}{2} \right) \\
\end{align}\]
Now, solving this equation we get:
\[\begin{align}
& \cos A\cos B\left( 2\cos \dfrac{B+A}{2}\sin \dfrac{B-A}{2} \right)=\sin A\sin B\left( -2\sin \dfrac{A+B}{2}\sin \dfrac{A-B}{2} \right) \\
& \Rightarrow \cos A\cos B\left( 2\cos \dfrac{B+A}{2}\sin \dfrac{B-A}{2} \right)=\sin A\sin B\left( 2\sin \dfrac{A+B}{2}\sin \dfrac{B-A}{2} \right) \\
& \Rightarrow \cos A\cos B\cos \dfrac{A+B}{2}=\sin A\sin B\sin \dfrac{A+B}{2} \\
& \Rightarrow \dfrac{\cos \dfrac{A+B}{2}}{\sin \dfrac{A+B}{2}}=\dfrac{\sin A\sin B}{\cos A\cos B} \\
\end{align}\]
Hence, we get:
\[\begin{align}
& \dfrac{\cos \dfrac{A+B}{2}}{\sin \dfrac{A+B}{2}}=\dfrac{\sin A\sin B}{\cos A\cos B} \\
& \therefore \cot \dfrac{A+B}{2}=\tan A\tan B \\
\end{align}\]
Hence, the given condition in the question is proved.
Note: Some formulas as the sum or difference of sin and cos are given below which might come in handy:
1. $\sin C+\sin D=2\sin \dfrac{C+D}{2}\cos \dfrac{C-D}{2}$
2. $\sin C-\sin D=2\cos \dfrac{C+D}{2}\sin \dfrac{C-D}{2}$
3. $\cos C+\cos D=2\cos \dfrac{C+D}{2}\cos \dfrac{C-D}{2}$
4. $\cos C-\cos D=-2\sin \dfrac{C+D}{2}\sin \dfrac{C-D}{2}$
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

