
If we have a trigonometric equation as \[\sin \left( \theta +{{23}^{0}} \right)=\cos \left( {{58}^{0}} \right)\], then what is the value of \[\cos 5\theta \] ?
Answer
579.6k+ views
Hint: For solving this problem first we find the value of \[\theta \] from the first equation given. We have to change all the terms in LHS and RHS into same trigonometric parameter that is we change all terms either in \[\sin \theta \] or \[\cos \theta \] by using the formulae \[\cos \theta =\sin \left( {{90}^{0}}-\theta \right)\] so that we can equate the angles directly that is if \[\sin \left( {{\theta }_{1}} \right)=\sin \left( {{\theta }_{2}} \right)\Rightarrow {{\theta }_{1}}={{\theta }_{2}}\], when \[{{\theta }_{1}} and {{\theta }_{2}}\in \left( 0,{{90}^{0}} \right)\]. Then we get \[\theta \] to find required value.
Complete step-by-step solution
Let us consider the given equation that is
\[\sin \left( \theta +{{23}^{0}} \right)=\cos \left( {{58}^{0}} \right)............equation(i)\]
We know that \[\cos \theta =\sin \left( {{90}^{0}}-\theta \right)\].
By using this formulae we can write
\[\begin{align}
& \Rightarrow \cos \left( {{58}^{0}} \right)=\sin \left( {{90}^{0}}-{{58}^{0}} \right) \\
& \Rightarrow \cos \left( {{58}^{0}} \right)=\sin \left( {{32}^{0}} \right) \\
\end{align}\]
By substituting the above result in the equation (i) we will get
\[\begin{align}
& \Rightarrow \sin \left( \theta +{{23}^{0}} \right)=\cos \left( {{58}^{0}} \right) \\
& \Rightarrow \sin \left( \theta +{{23}^{0}} \right)=\sin \left( {{32}^{0}} \right) \\
\end{align}\]
Here, we know that if \[{{\theta }_{1}} and {{\theta }_{2}}\in \left( 0,{{90}^{0}} \right)\] we can write \[\sin \left( {{\theta }_{1}} \right)=\sin \left( {{\theta }_{2}} \right)\Rightarrow {{\theta }_{1}}={{\theta }_{2}}\].
Now, by applying this theorem to above equation we will get
\[\begin{align}
& \Rightarrow \theta +{{23}^{0}}={{32}^{0}} \\
& \Rightarrow \theta ={{9}^{0}} \\
\end{align}\]
So, the value of \[\theta \] is \[{{9}^{0}}\].
Now, let us find the value of \[\cos 5\theta \], by substituting the value of \[\theta \] we get
\[\begin{align}
& \Rightarrow \cos 5\theta =\cos \left( 5\times {{9}^{0}} \right) \\
& \Rightarrow \cos 5\theta =\cos \left( {{45}^{0}} \right) \\
\end{align}\]
We know that the value of \[\cos {{45}^{0}}\] is \[\dfrac{1}{\sqrt{2}}\], this is the standard value.
So by substituting this value in above equation we will get
\[\Rightarrow \cos 5\theta =\dfrac{1}{\sqrt{2}}\]
Therefore, the value of \[\cos 5\theta \] is \[\dfrac{1}{\sqrt{2}}\].
Note: We can solve this problem in different methods also.
Above we converted all terms into \[\sin \theta \], now let us convert them to \[\cos \theta \].
We know that \[\cos \theta =\sin \left( {{90}^{0}}-\theta \right)\], similarly we can write \[\sin \theta =\cos \left( {{90}^{0}}-\theta \right)\]
By taking the equation we will get
\[\begin{align}
& \Rightarrow \sin \left( \theta +{{23}^{0}} \right)=\cos \left( {{58}^{0}} \right) \\
& \Rightarrow \cos \left( {{90}^{0}}-\left( \theta +{{23}^{0}} \right) \right)=\cos \left( {{58}^{0}} \right) \\
& \Rightarrow \cos \left( {{67}^{0}}-\theta \right)=\cos \left( {{58}^{0}} \right) \\
\end{align}\]
We know that \[\cos \left( {{\theta }_{1}} \right)=\cos \left( {{\theta }_{2}} \right)\Rightarrow {{\theta }_{1}}={{\theta }_{2}}\], when\[{{\theta }_{1}}and{{\theta }_{2}}\in \left( 0,{{90}^{0}} \right)\]
By applying this theorem we get
\[\begin{align}
& \Rightarrow \left( {{67}^{0}}-\theta \right)={{58}^{0}} \\
& \Rightarrow \theta ={{9}^{0}} \\
\end{align}\]
Now, let us find the value of \[\cos 5\theta \], by substituting the value of \[\theta \] we get
\[\begin{align}
& \Rightarrow \cos 5\theta =\cos \left( 5\times {{9}^{0}} \right) \\
& \Rightarrow \cos 5\theta =\cos \left( {{45}^{0}} \right) \\
\end{align}\]
We know that the value of \[\cos {{45}^{0}}\] is \[\dfrac{1}{\sqrt{2}}\], this is the standard value.
So by substituting this value in the above equation we will get
\[\Rightarrow \cos 5\theta =\dfrac{1}{\sqrt{2}}\]
Therefore, the value of \[\cos 5\theta \] is \[\dfrac{1}{\sqrt{2}}\].
Complete step-by-step solution
Let us consider the given equation that is
\[\sin \left( \theta +{{23}^{0}} \right)=\cos \left( {{58}^{0}} \right)............equation(i)\]
We know that \[\cos \theta =\sin \left( {{90}^{0}}-\theta \right)\].
By using this formulae we can write
\[\begin{align}
& \Rightarrow \cos \left( {{58}^{0}} \right)=\sin \left( {{90}^{0}}-{{58}^{0}} \right) \\
& \Rightarrow \cos \left( {{58}^{0}} \right)=\sin \left( {{32}^{0}} \right) \\
\end{align}\]
By substituting the above result in the equation (i) we will get
\[\begin{align}
& \Rightarrow \sin \left( \theta +{{23}^{0}} \right)=\cos \left( {{58}^{0}} \right) \\
& \Rightarrow \sin \left( \theta +{{23}^{0}} \right)=\sin \left( {{32}^{0}} \right) \\
\end{align}\]
Here, we know that if \[{{\theta }_{1}} and {{\theta }_{2}}\in \left( 0,{{90}^{0}} \right)\] we can write \[\sin \left( {{\theta }_{1}} \right)=\sin \left( {{\theta }_{2}} \right)\Rightarrow {{\theta }_{1}}={{\theta }_{2}}\].
Now, by applying this theorem to above equation we will get
\[\begin{align}
& \Rightarrow \theta +{{23}^{0}}={{32}^{0}} \\
& \Rightarrow \theta ={{9}^{0}} \\
\end{align}\]
So, the value of \[\theta \] is \[{{9}^{0}}\].
Now, let us find the value of \[\cos 5\theta \], by substituting the value of \[\theta \] we get
\[\begin{align}
& \Rightarrow \cos 5\theta =\cos \left( 5\times {{9}^{0}} \right) \\
& \Rightarrow \cos 5\theta =\cos \left( {{45}^{0}} \right) \\
\end{align}\]
We know that the value of \[\cos {{45}^{0}}\] is \[\dfrac{1}{\sqrt{2}}\], this is the standard value.
So by substituting this value in above equation we will get
\[\Rightarrow \cos 5\theta =\dfrac{1}{\sqrt{2}}\]
Therefore, the value of \[\cos 5\theta \] is \[\dfrac{1}{\sqrt{2}}\].
Note: We can solve this problem in different methods also.
Above we converted all terms into \[\sin \theta \], now let us convert them to \[\cos \theta \].
We know that \[\cos \theta =\sin \left( {{90}^{0}}-\theta \right)\], similarly we can write \[\sin \theta =\cos \left( {{90}^{0}}-\theta \right)\]
By taking the equation we will get
\[\begin{align}
& \Rightarrow \sin \left( \theta +{{23}^{0}} \right)=\cos \left( {{58}^{0}} \right) \\
& \Rightarrow \cos \left( {{90}^{0}}-\left( \theta +{{23}^{0}} \right) \right)=\cos \left( {{58}^{0}} \right) \\
& \Rightarrow \cos \left( {{67}^{0}}-\theta \right)=\cos \left( {{58}^{0}} \right) \\
\end{align}\]
We know that \[\cos \left( {{\theta }_{1}} \right)=\cos \left( {{\theta }_{2}} \right)\Rightarrow {{\theta }_{1}}={{\theta }_{2}}\], when\[{{\theta }_{1}}and{{\theta }_{2}}\in \left( 0,{{90}^{0}} \right)\]
By applying this theorem we get
\[\begin{align}
& \Rightarrow \left( {{67}^{0}}-\theta \right)={{58}^{0}} \\
& \Rightarrow \theta ={{9}^{0}} \\
\end{align}\]
Now, let us find the value of \[\cos 5\theta \], by substituting the value of \[\theta \] we get
\[\begin{align}
& \Rightarrow \cos 5\theta =\cos \left( 5\times {{9}^{0}} \right) \\
& \Rightarrow \cos 5\theta =\cos \left( {{45}^{0}} \right) \\
\end{align}\]
We know that the value of \[\cos {{45}^{0}}\] is \[\dfrac{1}{\sqrt{2}}\], this is the standard value.
So by substituting this value in the above equation we will get
\[\Rightarrow \cos 5\theta =\dfrac{1}{\sqrt{2}}\]
Therefore, the value of \[\cos 5\theta \] is \[\dfrac{1}{\sqrt{2}}\].
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

