
If we have a summation as ${{S}_{n}}=\sum\limits_{r=1}^{n}{\dfrac{r}{1.3.5......(2r+1)}}$ then?
(a) ${{S}_{n}}=\dfrac{1}{2}\left[ 1-\dfrac{r}{1.3.5......(2r+1)} \right]$
(b) ${{S}_{\infty }}=\dfrac{1}{2}$
(c) ${{S}_{n}}=\dfrac{1}{4}\left[ 1+\dfrac{r}{1.3.5......(2r+1)} \right]$
(d) ${{S}_{\infty }}=\dfrac{1}{4}$
Answer
556.5k+ views
Hint: We will start by substituting the value in the given expression. After that we will solve these questions by option. $\dfrac{\infty }{\infty }$ is an indeterminant form. So, use the L’ Hospital rule; in which we differentiate the numerator and the denominator separately i.e. if $\dfrac{f\left( x \right)}{g\left( x \right)}$ is our function, then after applying L’ Hospital rule it will become $\dfrac{\dfrac{d}{dx}f\left( x \right)}{\dfrac{d}{dx}g\left( x \right)}=\dfrac{f'\left( x \right)}{g'\left( x \right)}$.
Complete step-by-step solution:
According to the problem, we have given ${{S}_{n}}=\sum\limits_{r=1}^{n}{\dfrac{r}{1.3.5......(2r+1)}}$ and we need to find the values of ${{S}_{n}}$ and ${{S}_{\infty }}$.
Let us simplify the term $\dfrac{r}{1.3.5.7.......\left( 2r+1 \right)}$. Let us multiply numerator and denominator of this term with 2.
So, we get $\dfrac{r}{1.3.5.7.......\left( 2r+1 \right)}=\dfrac{1}{2}\times \dfrac{2r}{1.3.5.7.......\left( 2r+1 \right)}$.
$\Rightarrow \dfrac{r}{1.3.5.7.......\left( 2r+1 \right)}=\dfrac{1}{2}\times \left( \dfrac{2r+1-1}{1.3.5.7.......\left( 2r+1 \right)} \right)$.
$\Rightarrow \dfrac{r}{1.3.5.7.......\left( 2r-1 \right)}=\dfrac{1}{2}\times \left( \dfrac{2r+1}{1.3.5.7.......\left( 2r+1 \right)}-\dfrac{1}{1.3.5.7.......\left( 2r+1 \right)} \right)$.
$\Rightarrow \dfrac{r}{1.3.5.7.......\left( 2r-1 \right)}=\dfrac{1}{2}\times \left( \dfrac{1}{1.3.5.7.......\left( 2r-1 \right)}-\dfrac{1}{1.3.5.7.......\left( 2r+1 \right)} \right)$. Let us substitute this result in the required summation.
\[\Rightarrow {{S}_{n}}=\sum\limits_{r=1}^{n}{\left( \dfrac{1}{2}\times \left( \dfrac{1}{1.3.5.7.......\left( 2r-1 \right)}-\dfrac{1}{1.3.5.7.......\left( 2r+1 \right)} \right) \right)}\].
\[\Rightarrow {{S}_{n}}=\dfrac{1}{2}\sum\limits_{r=1}^{n}{\left( \dfrac{1}{1.3.5.7.......\left( 2r-1 \right)}-\dfrac{1}{1.3.5.7.......\left( 2r+1 \right)} \right)}\].
Let us substitute each term to get the summation.
\[\Rightarrow {{S}_{n}}=\dfrac{1}{2}\times \left( \dfrac{1}{1}-\dfrac{1}{1.3}+\dfrac{1}{1.3}-\dfrac{1}{1.3.5}+\dfrac{1}{1.3.5}-\dfrac{1}{1.3.5.7}+......+\dfrac{1}{1.3.5......\left( 2n-1 \right)}-\dfrac{1}{1.3.5......\left( 2n+1 \right)} \right)\].
We can see the second term is canceling the third term and the fourth term cancels the fifth term and this process continues till the first and last term remains.
So, we get \[{{S}_{n}}=\dfrac{1}{2}\times \left( 1-\dfrac{1}{1.3.5......\left( 2n+1 \right)} \right)\].
So, we have found the value of the sum of n-terms as \[{{S}_{n}}=\dfrac{1}{2}\times \left( 1-\dfrac{1}{1.3.5......\left( 2n+1 \right)} \right)\].
Now, let us substitute $\infty $ in place of n in the obtained sum.
So, we get \[{{S}_{\infty }}=\dfrac{1}{2}\times \left( 1-\dfrac{1}{1.3.5......\left( 2\left( \infty \right)+1 \right)} \right)\].
$\Rightarrow {{S}_{\infty }}=\dfrac{1}{2}\times \left( 1-\dfrac{1}{1.3.5......\infty } \right)$.
$\Rightarrow {{S}_{\infty }}=\dfrac{1}{2}\times \left( 1-\dfrac{1}{\infty } \right)$.
$\Rightarrow {{S}_{\infty }}=\dfrac{1}{2}\times \left( 1-0 \right)$.
$\Rightarrow {{S}_{\infty }}=\dfrac{1}{2}\times \left( 1 \right)$.
$\Rightarrow {{S}_{\infty }}=\dfrac{1}{2}$.
So, we have found the value of ${{S}_{\infty }}=\dfrac{1}{2}$.
Hence, the correct options will be (a) and (b).
Note: Since the absolute value of infinity is unknown we sometimes take the limit as infinity to find the value of ${{S}_{\infty }}$. We can also find the value of ${{S}_{1}}$ and cross verify the options by substituting 1 in place of n. We should see which terms are canceling in the series we just obtained after simplifying the term $\dfrac{r}{1.3.5.7.......\left( 2r+1 \right)}$. Here $\dfrac{1}{2}$ will be common for each term after expanding the summation so it can be taken outside of summation.
Complete step-by-step solution:
According to the problem, we have given ${{S}_{n}}=\sum\limits_{r=1}^{n}{\dfrac{r}{1.3.5......(2r+1)}}$ and we need to find the values of ${{S}_{n}}$ and ${{S}_{\infty }}$.
Let us simplify the term $\dfrac{r}{1.3.5.7.......\left( 2r+1 \right)}$. Let us multiply numerator and denominator of this term with 2.
So, we get $\dfrac{r}{1.3.5.7.......\left( 2r+1 \right)}=\dfrac{1}{2}\times \dfrac{2r}{1.3.5.7.......\left( 2r+1 \right)}$.
$\Rightarrow \dfrac{r}{1.3.5.7.......\left( 2r+1 \right)}=\dfrac{1}{2}\times \left( \dfrac{2r+1-1}{1.3.5.7.......\left( 2r+1 \right)} \right)$.
$\Rightarrow \dfrac{r}{1.3.5.7.......\left( 2r-1 \right)}=\dfrac{1}{2}\times \left( \dfrac{2r+1}{1.3.5.7.......\left( 2r+1 \right)}-\dfrac{1}{1.3.5.7.......\left( 2r+1 \right)} \right)$.
$\Rightarrow \dfrac{r}{1.3.5.7.......\left( 2r-1 \right)}=\dfrac{1}{2}\times \left( \dfrac{1}{1.3.5.7.......\left( 2r-1 \right)}-\dfrac{1}{1.3.5.7.......\left( 2r+1 \right)} \right)$. Let us substitute this result in the required summation.
\[\Rightarrow {{S}_{n}}=\sum\limits_{r=1}^{n}{\left( \dfrac{1}{2}\times \left( \dfrac{1}{1.3.5.7.......\left( 2r-1 \right)}-\dfrac{1}{1.3.5.7.......\left( 2r+1 \right)} \right) \right)}\].
\[\Rightarrow {{S}_{n}}=\dfrac{1}{2}\sum\limits_{r=1}^{n}{\left( \dfrac{1}{1.3.5.7.......\left( 2r-1 \right)}-\dfrac{1}{1.3.5.7.......\left( 2r+1 \right)} \right)}\].
Let us substitute each term to get the summation.
\[\Rightarrow {{S}_{n}}=\dfrac{1}{2}\times \left( \dfrac{1}{1}-\dfrac{1}{1.3}+\dfrac{1}{1.3}-\dfrac{1}{1.3.5}+\dfrac{1}{1.3.5}-\dfrac{1}{1.3.5.7}+......+\dfrac{1}{1.3.5......\left( 2n-1 \right)}-\dfrac{1}{1.3.5......\left( 2n+1 \right)} \right)\].
We can see the second term is canceling the third term and the fourth term cancels the fifth term and this process continues till the first and last term remains.
So, we get \[{{S}_{n}}=\dfrac{1}{2}\times \left( 1-\dfrac{1}{1.3.5......\left( 2n+1 \right)} \right)\].
So, we have found the value of the sum of n-terms as \[{{S}_{n}}=\dfrac{1}{2}\times \left( 1-\dfrac{1}{1.3.5......\left( 2n+1 \right)} \right)\].
Now, let us substitute $\infty $ in place of n in the obtained sum.
So, we get \[{{S}_{\infty }}=\dfrac{1}{2}\times \left( 1-\dfrac{1}{1.3.5......\left( 2\left( \infty \right)+1 \right)} \right)\].
$\Rightarrow {{S}_{\infty }}=\dfrac{1}{2}\times \left( 1-\dfrac{1}{1.3.5......\infty } \right)$.
$\Rightarrow {{S}_{\infty }}=\dfrac{1}{2}\times \left( 1-\dfrac{1}{\infty } \right)$.
$\Rightarrow {{S}_{\infty }}=\dfrac{1}{2}\times \left( 1-0 \right)$.
$\Rightarrow {{S}_{\infty }}=\dfrac{1}{2}\times \left( 1 \right)$.
$\Rightarrow {{S}_{\infty }}=\dfrac{1}{2}$.
So, we have found the value of ${{S}_{\infty }}=\dfrac{1}{2}$.
Hence, the correct options will be (a) and (b).
Note: Since the absolute value of infinity is unknown we sometimes take the limit as infinity to find the value of ${{S}_{\infty }}$. We can also find the value of ${{S}_{1}}$ and cross verify the options by substituting 1 in place of n. We should see which terms are canceling in the series we just obtained after simplifying the term $\dfrac{r}{1.3.5.7.......\left( 2r+1 \right)}$. Here $\dfrac{1}{2}$ will be common for each term after expanding the summation so it can be taken outside of summation.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

How many 5 digit telephone numbers can be constructed class 11 maths CBSE

Draw a well labelled diagram of reflex arc and explain class 11 biology CBSE

What is the difference between noise and music Can class 11 physics CBSE

Trending doubts
In what year Guru Nanak Dev ji was born A15 April 1469 class 11 social science CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

10 examples of friction in our daily life

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

