
If we have a matrix $\left| \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right|=5$, then find the value of $\left| \begin{matrix}
3a & 3b \\
3c & 3d \\
\end{matrix} \right|$.
Answer
585.3k+ views
Hint: This is a simple question of determinant which can be easily solved by using the property of determinant. The property is multiplication of determinant by a constant. When we multiply any determinant by a constant then every element of a particular row or column of the determinant gets multiplied by that constant.
Complete step-by-step answer:
It is given in the question that $\left| \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right|=5..................(1)$.
We know that when we multiply any determinant by constant, then every element of a particular row or column of the determinant gets multiplied by that constant.
Let D = $\left| \begin{matrix}
{{a}_{11}} & {{a}_{12}} \\
{{a}_{21}} & {{a}_{22}} \\
\end{matrix} \right|$be a determinant of order 2.
Let k be a constant, and we multiply k with determinant $\left| \begin{matrix}
{{a}_{11}} & {{a}_{12}} \\
{{a}_{21}} & {{a}_{22}} \\
\end{matrix} \right|$, we will get:
$\therefore k\times D=k\times \left| \begin{matrix}
{{a}_{11}} & {{a}_{12}} \\
{{a}_{21}} & {{a}_{22}} \\
\end{matrix} \right|$
$\Rightarrow kD=\left| \begin{matrix}
k{{a}_{11}} & k{{a}_{12}} \\
{{a}_{21}} & {{a}_{22}} \\
\end{matrix} \right|$
Now, when we multiply again the above determinant by k then, we will get:
$\Rightarrow k\times k\times D=\left| \begin{matrix}
k{{a}_{11}} & k{{a}_{12}} \\
k{{a}_{21}} & k{{a}_{22}} \\
\end{matrix} \right|$
We have to find the value of the determinant $\left| \begin{matrix}
3a & 3b \\
3c & 3d \\
\end{matrix} \right|$.
Here, it can be seen that 3 is common to all element row 1 and row 2 both of the above determinant. So, when we take out 3 common from row 1, we will get:
So, $\left| \begin{matrix}
3a & 3b \\
3c & 3d \\
\end{matrix} \right|$ can be rewritten as:
$\Rightarrow 3\times \left| \begin{matrix}
a & b \\
3c & 3d \\
\end{matrix} \right|$
Now, we will take out 3 common again from row 2, then we will get:
$\Rightarrow 3\times 3\left| \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right|$
From, equation (1), we know that $\left| \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right|=5$
$\therefore 3\times 3\times \left| \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right|=3\times 3\times 5$
So, $\left| \begin{matrix}
3a & 3b \\
3c & 3d \\
\end{matrix} \right|=45$
Hence, 45 is our required answer.
Note: There is also an alternate method of solving the above question. Instead of taking common 3 from $\left| \begin{matrix}
3a & 3b \\
3c & 3d \\
\end{matrix} \right|$, when we directly multiply $\left| \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right|=5$by 3 two times both sides, we will get:
$\Rightarrow 3\times 3\times \left| \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right|=3\times 3\times 5$
And, as I have explained before that when we multiply any determinant by constant, then every element of a particular row or column of the determinant gets multiplied by that constant. So,
$\Rightarrow 3\times 3\times \left| \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right|=3\times \left| \begin{matrix}
3a & 3b \\
c & d \\
\end{matrix} \right|=\left| \begin{matrix}
3a & 3b \\
3c & 3d \\
\end{matrix} \right|$
Therefore, $\left| \begin{matrix}
3a & 3b \\
3c & 3d \\
\end{matrix} \right|=45$.
Complete step-by-step answer:
It is given in the question that $\left| \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right|=5..................(1)$.
We know that when we multiply any determinant by constant, then every element of a particular row or column of the determinant gets multiplied by that constant.
Let D = $\left| \begin{matrix}
{{a}_{11}} & {{a}_{12}} \\
{{a}_{21}} & {{a}_{22}} \\
\end{matrix} \right|$be a determinant of order 2.
Let k be a constant, and we multiply k with determinant $\left| \begin{matrix}
{{a}_{11}} & {{a}_{12}} \\
{{a}_{21}} & {{a}_{22}} \\
\end{matrix} \right|$, we will get:
$\therefore k\times D=k\times \left| \begin{matrix}
{{a}_{11}} & {{a}_{12}} \\
{{a}_{21}} & {{a}_{22}} \\
\end{matrix} \right|$
$\Rightarrow kD=\left| \begin{matrix}
k{{a}_{11}} & k{{a}_{12}} \\
{{a}_{21}} & {{a}_{22}} \\
\end{matrix} \right|$
Now, when we multiply again the above determinant by k then, we will get:
$\Rightarrow k\times k\times D=\left| \begin{matrix}
k{{a}_{11}} & k{{a}_{12}} \\
k{{a}_{21}} & k{{a}_{22}} \\
\end{matrix} \right|$
We have to find the value of the determinant $\left| \begin{matrix}
3a & 3b \\
3c & 3d \\
\end{matrix} \right|$.
Here, it can be seen that 3 is common to all element row 1 and row 2 both of the above determinant. So, when we take out 3 common from row 1, we will get:
So, $\left| \begin{matrix}
3a & 3b \\
3c & 3d \\
\end{matrix} \right|$ can be rewritten as:
$\Rightarrow 3\times \left| \begin{matrix}
a & b \\
3c & 3d \\
\end{matrix} \right|$
Now, we will take out 3 common again from row 2, then we will get:
$\Rightarrow 3\times 3\left| \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right|$
From, equation (1), we know that $\left| \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right|=5$
$\therefore 3\times 3\times \left| \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right|=3\times 3\times 5$
So, $\left| \begin{matrix}
3a & 3b \\
3c & 3d \\
\end{matrix} \right|=45$
Hence, 45 is our required answer.
Note: There is also an alternate method of solving the above question. Instead of taking common 3 from $\left| \begin{matrix}
3a & 3b \\
3c & 3d \\
\end{matrix} \right|$, when we directly multiply $\left| \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right|=5$by 3 two times both sides, we will get:
$\Rightarrow 3\times 3\times \left| \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right|=3\times 3\times 5$
And, as I have explained before that when we multiply any determinant by constant, then every element of a particular row or column of the determinant gets multiplied by that constant. So,
$\Rightarrow 3\times 3\times \left| \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right|=3\times \left| \begin{matrix}
3a & 3b \\
c & d \\
\end{matrix} \right|=\left| \begin{matrix}
3a & 3b \\
3c & 3d \\
\end{matrix} \right|$
Therefore, $\left| \begin{matrix}
3a & 3b \\
3c & 3d \\
\end{matrix} \right|=45$.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

