
If we have a function as \[y = x\left[ {\left( {\cos \dfrac{x}{2}} \right) + \sin \left( {\dfrac{x}{2}} \right)\cos \left( {\dfrac{x}{2}} \right) - \sin \left( {\dfrac{x}{2}} \right) + \sin x} \right] + \dfrac{1}{2}\sqrt x \] , then find \[\dfrac{{dy}}{{dx}} = ?\]
A). \[\left( {1 + x} \right)\cos x + \left( {1 - x} \right)\sin x - \dfrac{1}{{4x\sqrt x }}\]
B). \[\left( {1 - x} \right)\cos x + \left( {1 - x} \right)\sin x + \dfrac{1}{{4x\sqrt x }}\]
C). \[\left( {1 + x} \right)\cos x + \left( {1 + x} \right)\sin x - \dfrac{1}{{4x\sqrt x }}\]
D). None of these
Answer
507.6k+ views
Hint: Here in the given question we need to solve the differentiation of the given expression, which contains trigonometric terms as well as simple variables, we know the associated formulae for both the terms, and accordingly will solve for the solution.
Formulae Used:
\[
\Rightarrow \dfrac{d}{{dx}}\left( {\cos x} \right) = - \sin x \\
\Rightarrow \dfrac{d}{{dx}}\left( {\sin x} \right) = \cos x \\
\Rightarrow \dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}} \\
\Rightarrow \left( {{{\cos }^2}\dfrac{x}{2}} \right) - \left( {{{\sin }^2}\dfrac{x}{2}} \right) = \cos \left( {2 \times \dfrac{x}{2}} \right) = \cos x \\
\Rightarrow \dfrac{d}{{dx}}\left( {u \times v} \right) = u'v + uv'\,\left( {u' = \dfrac{{du}}{{dx}}} \right) \\
\]
Complete step-by-step solution:
Here in the given question we have a expression which need to be differentiated with respect to “x”, and contain terms of trigonometry as well as simple variables are also there, on solving we get:
We have:
\[\Rightarrow y = x\left[ {\left\{ {\left( {\cos \dfrac{x}{2}} \right) + \left( {\sin \dfrac{x}{2}} \right)} \right\}\left\{ {\left( {\cos \dfrac{x}{2}} \right) - \left( {\sin \dfrac{x}{2}} \right)} \right\} + \sin x} \right] + \dfrac{1}{2}\sqrt x \\
\Rightarrow y = x\left[ {\left\{ {\left( {{{\cos }^2}\dfrac{x}{2}} \right) - \left( {{{\sin }^2}\dfrac{x}{2}} \right)} \right\} + \sin x} \right] + \dfrac{1}{2}\sqrt x \\
\Rightarrow \dfrac{d}{{dx}}\left( {u \times v} \right) = u'v + uv'\,\left( {u' = \dfrac{{du}}{{dx}}} \right) \]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}(x) \times \left[ {\left\{ {\left( {{{\cos }^2}\dfrac{x}{2}} \right) - \left( {{{\sin }^2}\dfrac{x}{2}} \right)} \right\} + \sin x} \right] + x\dfrac{d}{{dx}}\left[ {\left\{ {\left( {{{\cos }^2}\dfrac{x}{2}} \right) - \left( {{{\sin }^2}\dfrac{x}{2}} \right)} \right\} + \sin x} \right] + \dfrac{d}{{dx}}\left( {\dfrac{1}{2}\sqrt x } \right) \\
\Rightarrow we\,know\,\left[ {\left( {{{\cos }^2}\dfrac{x}{2}} \right) - \left( {{{\sin }^2}\dfrac{x}{2}} \right) = \cos \left( {2 \times \dfrac{x}{2}} \right) = \cos x} \right] \\
\Rightarrow \dfrac{{dy}}{{dx}} = 1 \times \left[ {\cos x + \sin x} \right] + x\dfrac{d}{{dx}}\left[ {\cos x + \sin x} \right] + \dfrac{1}{{2 \times 2}}\left( {\dfrac{1}{{\sqrt x }}} \right) \\
\Rightarrow \dfrac{{dy}}{{dx}} = \left[ {\cos x + \sin x} \right] + x\left[ { - \sin x + \cos x} \right] + \dfrac{1}{{4\sqrt x }} \\
\Rightarrow \dfrac{{dy}}{{dx}} = \cos x + \sin x - x\sin x + x\cos + \dfrac{1}{{4\sqrt x }} \\
\Rightarrow \dfrac{{dy}}{{dx}} = (1 + x)\cos x + (1 - x)\sin x + \dfrac{1}{{4\sqrt x }} \\
\]
Here we get the required differential for the given expression, and this is our simplified answer for the given expression.
Additional Information: In the given question we first convert the given expansion in term of \[\cos 2x\] and then solve further, by using the pro
Note: Here in the given question, we first need to simplify the expression, in order to solve it fast. As here the given expression has expansion of trigonometric identity, hence need to replace it with required terms in order to solve further.
Formulae Used:
\[
\Rightarrow \dfrac{d}{{dx}}\left( {\cos x} \right) = - \sin x \\
\Rightarrow \dfrac{d}{{dx}}\left( {\sin x} \right) = \cos x \\
\Rightarrow \dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}} \\
\Rightarrow \left( {{{\cos }^2}\dfrac{x}{2}} \right) - \left( {{{\sin }^2}\dfrac{x}{2}} \right) = \cos \left( {2 \times \dfrac{x}{2}} \right) = \cos x \\
\Rightarrow \dfrac{d}{{dx}}\left( {u \times v} \right) = u'v + uv'\,\left( {u' = \dfrac{{du}}{{dx}}} \right) \\
\]
Complete step-by-step solution:
Here in the given question we have a expression which need to be differentiated with respect to “x”, and contain terms of trigonometry as well as simple variables are also there, on solving we get:
We have:
\[\Rightarrow y = x\left[ {\left\{ {\left( {\cos \dfrac{x}{2}} \right) + \left( {\sin \dfrac{x}{2}} \right)} \right\}\left\{ {\left( {\cos \dfrac{x}{2}} \right) - \left( {\sin \dfrac{x}{2}} \right)} \right\} + \sin x} \right] + \dfrac{1}{2}\sqrt x \\
\Rightarrow y = x\left[ {\left\{ {\left( {{{\cos }^2}\dfrac{x}{2}} \right) - \left( {{{\sin }^2}\dfrac{x}{2}} \right)} \right\} + \sin x} \right] + \dfrac{1}{2}\sqrt x \\
\Rightarrow \dfrac{d}{{dx}}\left( {u \times v} \right) = u'v + uv'\,\left( {u' = \dfrac{{du}}{{dx}}} \right) \]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}(x) \times \left[ {\left\{ {\left( {{{\cos }^2}\dfrac{x}{2}} \right) - \left( {{{\sin }^2}\dfrac{x}{2}} \right)} \right\} + \sin x} \right] + x\dfrac{d}{{dx}}\left[ {\left\{ {\left( {{{\cos }^2}\dfrac{x}{2}} \right) - \left( {{{\sin }^2}\dfrac{x}{2}} \right)} \right\} + \sin x} \right] + \dfrac{d}{{dx}}\left( {\dfrac{1}{2}\sqrt x } \right) \\
\Rightarrow we\,know\,\left[ {\left( {{{\cos }^2}\dfrac{x}{2}} \right) - \left( {{{\sin }^2}\dfrac{x}{2}} \right) = \cos \left( {2 \times \dfrac{x}{2}} \right) = \cos x} \right] \\
\Rightarrow \dfrac{{dy}}{{dx}} = 1 \times \left[ {\cos x + \sin x} \right] + x\dfrac{d}{{dx}}\left[ {\cos x + \sin x} \right] + \dfrac{1}{{2 \times 2}}\left( {\dfrac{1}{{\sqrt x }}} \right) \\
\Rightarrow \dfrac{{dy}}{{dx}} = \left[ {\cos x + \sin x} \right] + x\left[ { - \sin x + \cos x} \right] + \dfrac{1}{{4\sqrt x }} \\
\Rightarrow \dfrac{{dy}}{{dx}} = \cos x + \sin x - x\sin x + x\cos + \dfrac{1}{{4\sqrt x }} \\
\Rightarrow \dfrac{{dy}}{{dx}} = (1 + x)\cos x + (1 - x)\sin x + \dfrac{1}{{4\sqrt x }} \\
\]
Here we get the required differential for the given expression, and this is our simplified answer for the given expression.
Additional Information: In the given question we first convert the given expansion in term of \[\cos 2x\] and then solve further, by using the pro
Note: Here in the given question, we first need to simplify the expression, in order to solve it fast. As here the given expression has expansion of trigonometric identity, hence need to replace it with required terms in order to solve further.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

Give 10 examples of unisexual and bisexual flowers

