
If we have $800=8\times {{10}^{8}}\times {{x}^{-\dfrac{3}{2}}}$, then the value of x is
(A). ${{10}^{2}}$
(B). ${{10}^{3}}$
(C). ${{10}^{4}}$
(D). ${{10}^{5}}$
Answer
598.2k+ views
Hint: In this given question, first of all we can convert 800 into the form of $8\times {{10}^{2}}$, then we can simplify it and get the value of x. Here, we need to know that ${{a}^{\dfrac{m}{n}}}={{\left( {{a}^{\dfrac{1}{n}}} \right)}^{m}}={{\left( {{a}^{m}} \right)}^{\dfrac{1}{n}}}$ and use this in order to solve this question.
Complete step-by-step solution -
In this given question, we are asked to find out the value of x from the equation $800=8\times {{10}^{8}}\times {{x}^{-\dfrac{3}{2}}}$.
In order to solve this question, we are going to use the following concept:
${{a}^{\dfrac{m}{n}}}={{\left( {{a}^{\dfrac{1}{n}}} \right)}^{m}}={{\left( {{a}^{m}} \right)}^{\dfrac{1}{n}}}............(1.1)$
The process of solving is as follows:
Writing 800 as $8\times {{10}^{2}}$, we can rewrite the equation given in the question as,
\[\begin{align}
& 800=8\times {{10}^{8}}\times {{x}^{-\dfrac{3}{2}}} \\
& \Rightarrow 8\times {{10}^{2}}=8\times {{10}^{8}}\times {{x}^{-\dfrac{3}{2}}} \\
& \Rightarrow {{10}^{2}}={{10}^{8}}\times \dfrac{1}{{{x}^{\dfrac{3}{2}}}} \\
& \Rightarrow {{x}^{\dfrac{3}{2}}}={{10}^{6}}..............(1.2) \\
\end{align}\]
Now, we know that ${{x}^{\dfrac{3}{2}}}={{\left( {{x}^{3}} \right)}^{\dfrac{1}{2}}}$ and ${{10}^{6}}={{\left( {{10}^{12}} \right)}^{\dfrac{1}{2}}}$. So, putting these values in equation 1.2, we get,
$\begin{align}
& {{x}^{\dfrac{3}{2}}}={{10}^{6}} \\
& \Rightarrow {{\left( {{x}^{3}} \right)}^{\dfrac{1}{2}}}={{\left( {{10}^{12}} \right)}^{\dfrac{1}{2}}} \\
& \Rightarrow {{x}^{3}}={{10}^{12}} \\
& \Rightarrow {{\left( {{x}^{3}} \right)}^{\dfrac{1}{3}}}={{\left( {{10}^{12}} \right)}^{\dfrac{1}{3}}}={{10}^{4}} \\
& \Rightarrow x={{10}^{4}}..............(1.3) \\
\end{align}$
Hence, we have obtained the required answer to this given question as $x={{10}^{4}}$ from equation 1.3.
Therefore, the correct option as the solution to this question is an option (c) as it corresponds to our obtained answer ${{10}^{4}}$.
Note: We should note that in order to reduce the power of a number by n, we should take the power of both sides equal to $\dfrac{1}{n}$ so that the exponents cancel out. We should not try to take the power of the negative of the exponent on both sides as by this the exponents will not cancel out and thus we cannot find the value of the base quantity.
Complete step-by-step solution -
In this given question, we are asked to find out the value of x from the equation $800=8\times {{10}^{8}}\times {{x}^{-\dfrac{3}{2}}}$.
In order to solve this question, we are going to use the following concept:
${{a}^{\dfrac{m}{n}}}={{\left( {{a}^{\dfrac{1}{n}}} \right)}^{m}}={{\left( {{a}^{m}} \right)}^{\dfrac{1}{n}}}............(1.1)$
The process of solving is as follows:
Writing 800 as $8\times {{10}^{2}}$, we can rewrite the equation given in the question as,
\[\begin{align}
& 800=8\times {{10}^{8}}\times {{x}^{-\dfrac{3}{2}}} \\
& \Rightarrow 8\times {{10}^{2}}=8\times {{10}^{8}}\times {{x}^{-\dfrac{3}{2}}} \\
& \Rightarrow {{10}^{2}}={{10}^{8}}\times \dfrac{1}{{{x}^{\dfrac{3}{2}}}} \\
& \Rightarrow {{x}^{\dfrac{3}{2}}}={{10}^{6}}..............(1.2) \\
\end{align}\]
Now, we know that ${{x}^{\dfrac{3}{2}}}={{\left( {{x}^{3}} \right)}^{\dfrac{1}{2}}}$ and ${{10}^{6}}={{\left( {{10}^{12}} \right)}^{\dfrac{1}{2}}}$. So, putting these values in equation 1.2, we get,
$\begin{align}
& {{x}^{\dfrac{3}{2}}}={{10}^{6}} \\
& \Rightarrow {{\left( {{x}^{3}} \right)}^{\dfrac{1}{2}}}={{\left( {{10}^{12}} \right)}^{\dfrac{1}{2}}} \\
& \Rightarrow {{x}^{3}}={{10}^{12}} \\
& \Rightarrow {{\left( {{x}^{3}} \right)}^{\dfrac{1}{3}}}={{\left( {{10}^{12}} \right)}^{\dfrac{1}{3}}}={{10}^{4}} \\
& \Rightarrow x={{10}^{4}}..............(1.3) \\
\end{align}$
Hence, we have obtained the required answer to this given question as $x={{10}^{4}}$ from equation 1.3.
Therefore, the correct option as the solution to this question is an option (c) as it corresponds to our obtained answer ${{10}^{4}}$.
Note: We should note that in order to reduce the power of a number by n, we should take the power of both sides equal to $\dfrac{1}{n}$ so that the exponents cancel out. We should not try to take the power of the negative of the exponent on both sides as by this the exponents will not cancel out and thus we cannot find the value of the base quantity.
Recently Updated Pages
You are awaiting your class 10th results Meanwhile class 7 english CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Trending doubts
Convert 200 Million dollars in rupees class 7 maths CBSE

Bluebaby syndrome is caused by A Cadmium pollution class 7 biology CBSE

AIM To prepare stained temporary mount of onion peel class 7 biology CBSE

Fill in the blanks with appropriate modals a Drivers class 7 english CBSE

Who among the following opened first school for girls class 9 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE


