
If we have $2y={{\left( {{\cot }^{-1}}\left( \dfrac{\sqrt{3}\cos x+\sin x}{\cos x-\sqrt{3}\sin x} \right) \right)}^{2}}$ then the value of $\dfrac{dy}{dx}$ is equal to.
$\begin{align}
& a)x-\dfrac{\pi }{6} \\
& b)x+\dfrac{\pi }{6} \\
& c)2x-\dfrac{\pi }{6} \\
& d)2x-\dfrac{\pi }{3} \\
\end{align}$
Answer
586.8k+ views
Hint: Now fist we will consider $\dfrac{\sqrt{3}\cos x+\sin x}{\cos x-\sqrt{3}\sin x}$ and divide the equation by cosx. Now we know that $\tan \left( \dfrac{\pi }{3} \right)=\sqrt{3}$ hence using this we will get the expression in form of tan. Now we will use the formula $\tan \left( a+b \right)=\dfrac{\tan a+\tan b}{1-\tan a\tan b}$ . Then we will convert $\tan \theta $ into $\cot \theta $ and differentiate the expression with the formula $\left( f\left( g\left( x \right) \right) \right)'=f'\left( g\left( x \right) \right).g'\left( x \right)$ .
Complete answer:
Now we are given with the expression $2y={{\left( {{\cot }^{-1}}\left( \dfrac{\sqrt{3}\cos x+\sin x}{\cos x-\sqrt{3}\sin x} \right) \right)}^{2}}$ .
Now first let us consider the expression $\dfrac{\sqrt{3}\cos x+\sin x}{\cos x-\sqrt{3}\sin x}$ .
We will first try to simplify this expression.
Now let us divide the expression by cosx. Hence we get,
$\dfrac{\sqrt{3}+\dfrac{\sin x}{\cos x}}{1-\sqrt{3}\dfrac{\sin x}{\cos x}}=\dfrac{\sqrt{3}+\tan x}{1-\sqrt{3}\tan x}$
Now we know that the value of $\tan \left( \dfrac{\pi }{3} \right)=\sqrt{3}$ . Hence substituting this in the equation above we get
\[\dfrac{\sqrt{3}+\tan x}{1-\sqrt{3}\tan x}=\dfrac{\tan \left( \dfrac{\pi }{3} \right)+\tan x}{1-\tan \left( \dfrac{\pi }{3} \right)\tan x}\]
Now we know that $\tan \left( a+b \right)=\dfrac{\tan a+\tan b}{1-\tan a\tan b}$ and the equation above is in this form. Hence using this formula we can say
\[\dfrac{\tan \left( \dfrac{\pi }{3} \right)+\tan x}{1-\tan \left( \dfrac{\pi }{3} \right)\tan x}=\tan \left( \dfrac{\pi }{3}+x \right)\]
Hence we now have $\dfrac{\sqrt{3}\cos x+\sin x}{\cos x-\sqrt{3}\sin x}=\tan \left( \dfrac{\pi }{3}+x \right)......................\left( 1 \right)$ .
Now we want to convert this into cot. We know that the relation between tan and cot is $\cot \left( \dfrac{\pi }{2}-x \right)=\tan x$
Hence we have $\cot \left( \dfrac{\pi }{2}-\left( \dfrac{\pi }{3}+x \right) \right)=\tan \left( \dfrac{\pi }{3}+x \right)$ using this substitution in equation (1) we get.
$\dfrac{\sqrt{3}\cos x+\sin x}{\cos x-\sqrt{3}\sin x}=\cot \left( \dfrac{\pi }{2}-\left( \dfrac{\pi }{3}+x \right) \right)$
Now if we take ${{\cot }^{-1}}$ on both sides we get.
$\begin{align}
& {{\cot }^{-1}}\left( \dfrac{\sqrt{3}\cos x+\sin x}{\cos x-\sqrt{3}\sin x} \right)={{\cot }^{-1}}\left( \cot \left( \dfrac{\pi }{2}-\left( \dfrac{\pi }{3}+x \right) \right) \right) \\
& \Rightarrow {{\cot }^{-1}}\left( \dfrac{\sqrt{3}\cos x+\sin x}{\cos x-\sqrt{3}\sin x} \right)=\dfrac{\pi }{2}-\left( \dfrac{\pi }{3}+x \right) \\
\end{align}$
Now let us square on both sides.
\[{{\left( {{\cot }^{-1}}\left( \dfrac{\sqrt{3}\cos x+\sin x}{\cos x-\sqrt{3}\sin x} \right) \right)}^{2}}={{\left( \dfrac{\pi }{2}-\left( \dfrac{\pi }{3}+x \right) \right)}^{2}}\]
But we have $2y={{\left( {{\cot }^{-1}}\left( \dfrac{\sqrt{3}\cos x+\sin x}{\cos x-\sqrt{3}\sin x} \right) \right)}^{2}}$
This means $2y={{\left( \dfrac{\pi }{2}-\left( \dfrac{\pi }{3}+x \right) \right)}^{2}}$
Hence we get $2y={{\left( \dfrac{\pi }{2}-\dfrac{\pi }{3}-x \right)}^{2}}......................(2)$
Now we know that according to chain rule $\left( f\left( g\left( x \right) \right) \right)'=f'\left( g\left( x \right) \right).g'\left( x \right)$
Using this formula let us differentiate equation (2).
$\begin{align}
& 2\dfrac{dy}{dx}=2\left( \dfrac{\pi }{2}-\dfrac{\pi }{3}-x \right)\left( -1 \right) \\
& \Rightarrow \dfrac{dy}{dx}=-\left( \dfrac{\pi }{2}-\dfrac{\pi }{3}-x \right) \\
& \Rightarrow \dfrac{dy}{dx}=-\left( \dfrac{3\pi -2\pi }{6}-x \right) \\
& \Rightarrow \dfrac{dy}{dx}=-\left( \dfrac{\pi }{6}-x \right) \\
& \Rightarrow \dfrac{dy}{dx}=x-\dfrac{\pi }{6} \\
\end{align}$
Hence option a is the correct option.
Note:
Now since we know the chain rule for differentiation we shouldn’t directly start with this in these types of questionss. It’s always better to simplify first. Especially if there is an inverse trigonometric function with trigonometric ratios.
Complete answer:
Now we are given with the expression $2y={{\left( {{\cot }^{-1}}\left( \dfrac{\sqrt{3}\cos x+\sin x}{\cos x-\sqrt{3}\sin x} \right) \right)}^{2}}$ .
Now first let us consider the expression $\dfrac{\sqrt{3}\cos x+\sin x}{\cos x-\sqrt{3}\sin x}$ .
We will first try to simplify this expression.
Now let us divide the expression by cosx. Hence we get,
$\dfrac{\sqrt{3}+\dfrac{\sin x}{\cos x}}{1-\sqrt{3}\dfrac{\sin x}{\cos x}}=\dfrac{\sqrt{3}+\tan x}{1-\sqrt{3}\tan x}$
Now we know that the value of $\tan \left( \dfrac{\pi }{3} \right)=\sqrt{3}$ . Hence substituting this in the equation above we get
\[\dfrac{\sqrt{3}+\tan x}{1-\sqrt{3}\tan x}=\dfrac{\tan \left( \dfrac{\pi }{3} \right)+\tan x}{1-\tan \left( \dfrac{\pi }{3} \right)\tan x}\]
Now we know that $\tan \left( a+b \right)=\dfrac{\tan a+\tan b}{1-\tan a\tan b}$ and the equation above is in this form. Hence using this formula we can say
\[\dfrac{\tan \left( \dfrac{\pi }{3} \right)+\tan x}{1-\tan \left( \dfrac{\pi }{3} \right)\tan x}=\tan \left( \dfrac{\pi }{3}+x \right)\]
Hence we now have $\dfrac{\sqrt{3}\cos x+\sin x}{\cos x-\sqrt{3}\sin x}=\tan \left( \dfrac{\pi }{3}+x \right)......................\left( 1 \right)$ .
Now we want to convert this into cot. We know that the relation between tan and cot is $\cot \left( \dfrac{\pi }{2}-x \right)=\tan x$
Hence we have $\cot \left( \dfrac{\pi }{2}-\left( \dfrac{\pi }{3}+x \right) \right)=\tan \left( \dfrac{\pi }{3}+x \right)$ using this substitution in equation (1) we get.
$\dfrac{\sqrt{3}\cos x+\sin x}{\cos x-\sqrt{3}\sin x}=\cot \left( \dfrac{\pi }{2}-\left( \dfrac{\pi }{3}+x \right) \right)$
Now if we take ${{\cot }^{-1}}$ on both sides we get.
$\begin{align}
& {{\cot }^{-1}}\left( \dfrac{\sqrt{3}\cos x+\sin x}{\cos x-\sqrt{3}\sin x} \right)={{\cot }^{-1}}\left( \cot \left( \dfrac{\pi }{2}-\left( \dfrac{\pi }{3}+x \right) \right) \right) \\
& \Rightarrow {{\cot }^{-1}}\left( \dfrac{\sqrt{3}\cos x+\sin x}{\cos x-\sqrt{3}\sin x} \right)=\dfrac{\pi }{2}-\left( \dfrac{\pi }{3}+x \right) \\
\end{align}$
Now let us square on both sides.
\[{{\left( {{\cot }^{-1}}\left( \dfrac{\sqrt{3}\cos x+\sin x}{\cos x-\sqrt{3}\sin x} \right) \right)}^{2}}={{\left( \dfrac{\pi }{2}-\left( \dfrac{\pi }{3}+x \right) \right)}^{2}}\]
But we have $2y={{\left( {{\cot }^{-1}}\left( \dfrac{\sqrt{3}\cos x+\sin x}{\cos x-\sqrt{3}\sin x} \right) \right)}^{2}}$
This means $2y={{\left( \dfrac{\pi }{2}-\left( \dfrac{\pi }{3}+x \right) \right)}^{2}}$
Hence we get $2y={{\left( \dfrac{\pi }{2}-\dfrac{\pi }{3}-x \right)}^{2}}......................(2)$
Now we know that according to chain rule $\left( f\left( g\left( x \right) \right) \right)'=f'\left( g\left( x \right) \right).g'\left( x \right)$
Using this formula let us differentiate equation (2).
$\begin{align}
& 2\dfrac{dy}{dx}=2\left( \dfrac{\pi }{2}-\dfrac{\pi }{3}-x \right)\left( -1 \right) \\
& \Rightarrow \dfrac{dy}{dx}=-\left( \dfrac{\pi }{2}-\dfrac{\pi }{3}-x \right) \\
& \Rightarrow \dfrac{dy}{dx}=-\left( \dfrac{3\pi -2\pi }{6}-x \right) \\
& \Rightarrow \dfrac{dy}{dx}=-\left( \dfrac{\pi }{6}-x \right) \\
& \Rightarrow \dfrac{dy}{dx}=x-\dfrac{\pi }{6} \\
\end{align}$
Hence option a is the correct option.
Note:
Now since we know the chain rule for differentiation we shouldn’t directly start with this in these types of questionss. It’s always better to simplify first. Especially if there is an inverse trigonometric function with trigonometric ratios.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Who gave "Inqilab Zindabad" slogan?

Write a letter to the principal requesting him to grant class 10 english CBSE

Who was Subhash Chandra Bose Why was he called Net class 10 english CBSE

