
If we consider only the principle values of the inverse trigonometric functions, then the values of $\tan \left( {{{\cos }^{ - 1}}\dfrac{1}{{5\sqrt 2 }} - {{\sin }^{ - 1}}\dfrac{4}{{\sqrt {17} }}} \right)$ is
A) $\sqrt {\dfrac{{29}}{3}} $
B) $\dfrac{{29}}{3}$
C) $\sqrt {\dfrac{3}{{29}}} $
D) $\dfrac{3}{{29}}$
Answer
581.1k+ views
Hint:
Firstly, convert ${\cos ^{ - 1}}\dfrac{1}{{5\sqrt 2 }}$ and ${\sin ^{ - 1}}\dfrac{4}{{\sqrt {17} }}$ in the terms of ${\tan ^{ - 1}}$.
After that, substitute the values in terms of ${\tan ^{ - 1}}$ , apply the property ${\tan ^{ - 1}}a - {\tan ^{ - 1}}b = {\tan ^{ - 1}}\left( {\dfrac{{a - b}}{{1 + ab}}} \right)$.
Thus, get the answer and choose the correct option.
Complete step by step solution:
We are given that $\tan \left( {{{\cos }^{ - 1}}\dfrac{1}{{5\sqrt 2 }} - {{\sin }^{ - 1}}\dfrac{4}{{\sqrt {17} }}} \right)$ .
To solve it, first we have to convert ${\cos ^{ - 1}}\dfrac{1}{{5\sqrt 2 }}$ and ${\sin ^{ - 1}}\dfrac{4}{{\sqrt {17} }}$ in the terms of ${\tan ^{ - 1}}$ .
\[
{\cos ^{ - 1}}\dfrac{1}{{5\sqrt 2 }} = {\tan ^{ - 1}}\dfrac{{\sqrt {{{\left( {5\sqrt 2 } \right)}^2} - {{\left( 1 \right)}^2}} }}{1} \\
= {\tan ^{ - 1}}\dfrac{{\sqrt {50 - 1} }}{1} \\
= {\tan ^{ - 1}}\sqrt {49} \\
= {\tan ^{ - 1}}7
\]
And
$
{\sin ^{ - 1}}\dfrac{4}{{\sqrt {17} }} = {\tan ^{ - 1}}\dfrac{4}{{\sqrt {{{\left( {\sqrt {17} } \right)}^2} - {{\left( 4 \right)}^2}} }} \\
= {\tan ^{ - 1}}\dfrac{4}{{\sqrt {17 - 16} }} \\
= {\tan ^{ - 1}}\dfrac{4}{{\sqrt 1 }} \\
= {\tan ^{ - 1}}4
$
Now, substituting ${\cos ^{ - 1}}\dfrac{1}{{5\sqrt 2 }} = {\tan ^{ - 1}}7$ and ${\sin ^{ - 1}}\dfrac{4}{{\sqrt {17} }} = {\tan ^{ - 1}}4$ in $\tan \left( {{{\cos }^{ - 1}}\dfrac{1}{{5\sqrt 2 }} - {{\sin }^{ - 1}}\dfrac{4}{{\sqrt {17} }}} \right)$ .
\[\therefore \tan \left( {{{\cos }^{ - 1}}\dfrac{1}{{5\sqrt 2 }} - {{\sin }^{ - 1}}\dfrac{4}{{\sqrt {17} }}} \right) = \tan \left( {{{\tan }^{ - 1}}7 - {{\tan }^{ - 1}}4} \right)\]
Then, applying the property ${\tan ^{ - 1}}a - {\tan ^{ - 1}}b = {\tan ^{ - 1}}\left( {\dfrac{{a - b}}{{1 + ab}}} \right)$ .
$\therefore \tan \left( {{{\tan }^{ - 1}}7 - {{\tan }^{ - 1}}4} \right) = \tan \left( {{{\tan }^{ - 1}}\left( {\dfrac{{7 - 4}}{{1 + 7 \times 4}}} \right)} \right)$
$
= \tan \left( {{{\tan }^{ - 1}}\left( {\dfrac{3}{{1 + 28}}} \right)} \right) \\
= \tan \left( {{{\tan }^{ - 1}}\left( {\dfrac{3}{{29}}} \right)} \right) \\
= \dfrac{3}{{29}} \\
$
Thus, $\tan \left( {{{\cos }^{ - 1}}\dfrac{1}{{5\sqrt 2 }} - {{\sin }^{ - 1}}\dfrac{4}{{\sqrt {17} }}} \right) = \dfrac{3}{{29}}$ .
So, option (D) is correct.
Note:
Some properties of inverse trigonometric tan functions:
\[
\tan \left( {{{\tan }^{ - 1}}x} \right) = x, - \infty \leqslant x \leqslant \infty \\
{\tan ^{ - 1}}\left( {\tan x} \right) = x, - \dfrac{\pi }{2} \leqslant x \leqslant \dfrac{\pi }{2} \\
{\tan ^{ - 1}}\left( { - x} \right) = - {\tan ^{ - 1}}x \\
{\tan ^{ - 1}}x + {\cot ^{ - 1}}x = 1 \\
{\tan ^{ - 1}}x + {\tan ^{ - 1}}y = \left\{
{\tan ^{ - 1}}\left( {\dfrac{{x + y}}{{1 - xy}}} \right),xy < 1 \\
\pi + {\tan ^{ - 1}}\left( {\dfrac{{x + y}}{{1 - xy}}} \right),xy > 1 \\
\right. \\
{\tan ^{ - 1}}x - {\tan ^{ - 1}}y = {\tan ^{ - 1}}\left( {\dfrac{{x - y}}{{1 + xy}}} \right) \\
\]
Firstly, convert ${\cos ^{ - 1}}\dfrac{1}{{5\sqrt 2 }}$ and ${\sin ^{ - 1}}\dfrac{4}{{\sqrt {17} }}$ in the terms of ${\tan ^{ - 1}}$.
After that, substitute the values in terms of ${\tan ^{ - 1}}$ , apply the property ${\tan ^{ - 1}}a - {\tan ^{ - 1}}b = {\tan ^{ - 1}}\left( {\dfrac{{a - b}}{{1 + ab}}} \right)$.
Thus, get the answer and choose the correct option.
Complete step by step solution:
We are given that $\tan \left( {{{\cos }^{ - 1}}\dfrac{1}{{5\sqrt 2 }} - {{\sin }^{ - 1}}\dfrac{4}{{\sqrt {17} }}} \right)$ .
To solve it, first we have to convert ${\cos ^{ - 1}}\dfrac{1}{{5\sqrt 2 }}$ and ${\sin ^{ - 1}}\dfrac{4}{{\sqrt {17} }}$ in the terms of ${\tan ^{ - 1}}$ .
\[
{\cos ^{ - 1}}\dfrac{1}{{5\sqrt 2 }} = {\tan ^{ - 1}}\dfrac{{\sqrt {{{\left( {5\sqrt 2 } \right)}^2} - {{\left( 1 \right)}^2}} }}{1} \\
= {\tan ^{ - 1}}\dfrac{{\sqrt {50 - 1} }}{1} \\
= {\tan ^{ - 1}}\sqrt {49} \\
= {\tan ^{ - 1}}7
\]
And
$
{\sin ^{ - 1}}\dfrac{4}{{\sqrt {17} }} = {\tan ^{ - 1}}\dfrac{4}{{\sqrt {{{\left( {\sqrt {17} } \right)}^2} - {{\left( 4 \right)}^2}} }} \\
= {\tan ^{ - 1}}\dfrac{4}{{\sqrt {17 - 16} }} \\
= {\tan ^{ - 1}}\dfrac{4}{{\sqrt 1 }} \\
= {\tan ^{ - 1}}4
$
Now, substituting ${\cos ^{ - 1}}\dfrac{1}{{5\sqrt 2 }} = {\tan ^{ - 1}}7$ and ${\sin ^{ - 1}}\dfrac{4}{{\sqrt {17} }} = {\tan ^{ - 1}}4$ in $\tan \left( {{{\cos }^{ - 1}}\dfrac{1}{{5\sqrt 2 }} - {{\sin }^{ - 1}}\dfrac{4}{{\sqrt {17} }}} \right)$ .
\[\therefore \tan \left( {{{\cos }^{ - 1}}\dfrac{1}{{5\sqrt 2 }} - {{\sin }^{ - 1}}\dfrac{4}{{\sqrt {17} }}} \right) = \tan \left( {{{\tan }^{ - 1}}7 - {{\tan }^{ - 1}}4} \right)\]
Then, applying the property ${\tan ^{ - 1}}a - {\tan ^{ - 1}}b = {\tan ^{ - 1}}\left( {\dfrac{{a - b}}{{1 + ab}}} \right)$ .
$\therefore \tan \left( {{{\tan }^{ - 1}}7 - {{\tan }^{ - 1}}4} \right) = \tan \left( {{{\tan }^{ - 1}}\left( {\dfrac{{7 - 4}}{{1 + 7 \times 4}}} \right)} \right)$
$
= \tan \left( {{{\tan }^{ - 1}}\left( {\dfrac{3}{{1 + 28}}} \right)} \right) \\
= \tan \left( {{{\tan }^{ - 1}}\left( {\dfrac{3}{{29}}} \right)} \right) \\
= \dfrac{3}{{29}} \\
$
Thus, $\tan \left( {{{\cos }^{ - 1}}\dfrac{1}{{5\sqrt 2 }} - {{\sin }^{ - 1}}\dfrac{4}{{\sqrt {17} }}} \right) = \dfrac{3}{{29}}$ .
So, option (D) is correct.
Note:
Some properties of inverse trigonometric tan functions:
\[
\tan \left( {{{\tan }^{ - 1}}x} \right) = x, - \infty \leqslant x \leqslant \infty \\
{\tan ^{ - 1}}\left( {\tan x} \right) = x, - \dfrac{\pi }{2} \leqslant x \leqslant \dfrac{\pi }{2} \\
{\tan ^{ - 1}}\left( { - x} \right) = - {\tan ^{ - 1}}x \\
{\tan ^{ - 1}}x + {\cot ^{ - 1}}x = 1 \\
{\tan ^{ - 1}}x + {\tan ^{ - 1}}y = \left\{
{\tan ^{ - 1}}\left( {\dfrac{{x + y}}{{1 - xy}}} \right),xy < 1 \\
\pi + {\tan ^{ - 1}}\left( {\dfrac{{x + y}}{{1 - xy}}} \right),xy > 1 \\
\right. \\
{\tan ^{ - 1}}x - {\tan ^{ - 1}}y = {\tan ^{ - 1}}\left( {\dfrac{{x - y}}{{1 + xy}}} \right) \\
\]
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

