
If we are given the inverse trigonometric expression as \[{\tan ^{ - 1}}x + {\tan ^{ - 1}}y\]
\[ = {\tan ^{ - 1}}\dfrac{{x + y}}{{1 - xy}},xy < 1\]
\[ = \pi + {\tan ^{ - 1}}\dfrac{{x + y}}{{1 - xy}},xy > 1\]
Evaluate: \[{\tan ^{ - 1}}\dfrac{{3\sin 2\alpha }}{{5 + 3\cos 2\alpha }} + {\tan ^{ - 1}}\left( {\dfrac{{\tan \alpha }}{4}} \right)\]
where \[ - \dfrac{\pi }{2} < \alpha < \dfrac{\pi }{2}\]
A). \[\alpha \]
B). \[2\alpha \]
C). \[3\alpha \]
D). \[4\alpha \]
Answer
537.9k+ views
Hint: In the given question, we have been given an expression involving the inverse of a trigonometric expression. We have to solve for an argument of the expression where the argument has some restraints on it. To solve it, we are going to first simplify the expression inside the inverse bracket into the form with which they can directly come out of the brackets. Then we are going to use the standard results and solve for our answer.
Complete step by step solution:
We have to evaluate the value of \[A = {\tan ^{ - 1}}\dfrac{{3\sin 2\alpha }}{{5 + 3\cos 2\alpha }} + {\tan ^{ - 1}}\left( {\dfrac{{\tan \alpha }}{4}} \right)\].
Let \[x = \dfrac{{3\sin 2\alpha }}{{5 + 3\cos 2\alpha }}\].
First, we are going to simplify the value of \[x\].
We know, \[\sin 2\theta = \dfrac{{2\tan \theta }}{{1 + {{\tan }^2}\theta }}\] and \[\cos 2\theta = \dfrac{{1 - {{\tan }^2}\theta }}{{1 + {{\tan }^2}\theta }}\].
So, \[x = \dfrac{{3 \times \dfrac{{2\tan \alpha }}{{1 + {{\tan }^2}\alpha }}}}{{5 + 3 \times \dfrac{{1 - {{\tan }^2}\alpha }}{{1 + {{\tan }^2}\alpha }}}} = \dfrac{{6\tan \alpha }}{{5\left( {1 + {{\tan }^2}\alpha } \right) + 3\left( {1 - {{\tan }^2}\alpha } \right)}}\]
Opening the brackets and simplifying,
\[x = \dfrac{{6\tan \alpha }}{{5 + 5{{\tan }^2}\alpha + 3 - 3{{\tan }^2}\alpha }} = \dfrac{{6\tan \alpha }}{{8 + 2{{\tan }^2}\alpha }} = \dfrac{{3\tan \alpha }}{{4 + {{\tan }^2}\alpha }}\]
Now, \[x = \dfrac{{\dfrac{3}{4}\tan \alpha }}{{1 + \dfrac{1}{4}{{\tan }^2}\alpha }} = \dfrac{{\tan \alpha - \dfrac{1}{4}\tan \alpha }}{{1 + \dfrac{1}{4}\tan \alpha \times \tan \alpha }}\]
So, \[{\tan ^{ - 1}}x = {\tan ^{ - 1}}\left( {\dfrac{{\tan \alpha - \dfrac{1}{4}\tan \alpha }}{{1 + \dfrac{1}{4}\tan \alpha \times \tan \alpha }}} \right)\]
Now, it has been given that,
\[{\tan ^{ - 1}}x + {\tan ^{ - 1}}y\]
\[ = {\tan ^{ - 1}}\dfrac{{x + y}}{{1 - xy}},xy < 1\]
\[ = \pi + {\tan ^{ - 1}}\dfrac{{x + y}}{{1 - xy}},xy > 1\]
So, \[{\tan ^{ - 1}}\left( {\dfrac{{\tan \alpha - \dfrac{1}{4}\tan \alpha }}{{1 + \dfrac{1}{4}\tan \alpha \times \tan \alpha }}} \right) = {\tan ^{ - 1}}\left( {\tan \left( \alpha \right)} \right) - {\tan ^{ - 1}}\left( {\dfrac{{\tan \alpha }}{4}} \right) = \alpha - {\tan ^{ - 1}}\left( {\dfrac{{\tan \alpha }}{4}} \right)\]
Now, we have,
\[A = \alpha - {\tan ^{ - 1}}\left( {\dfrac{{\tan \alpha }}{4}} \right) + {\tan ^{ - 1}}\left( {\dfrac{{\tan \alpha }}{4}} \right) = \alpha \]
Hence, the correct option is A.
Note: In the given question, we had to simplify an inverse expression of trigonometry. We solved it by simplifying the expression which was the argument of the inverse expression. So, to solve that, we must know the formulae and their results. Then we just used the standard results and solved for our answer.
Complete step by step solution:
We have to evaluate the value of \[A = {\tan ^{ - 1}}\dfrac{{3\sin 2\alpha }}{{5 + 3\cos 2\alpha }} + {\tan ^{ - 1}}\left( {\dfrac{{\tan \alpha }}{4}} \right)\].
Let \[x = \dfrac{{3\sin 2\alpha }}{{5 + 3\cos 2\alpha }}\].
First, we are going to simplify the value of \[x\].
We know, \[\sin 2\theta = \dfrac{{2\tan \theta }}{{1 + {{\tan }^2}\theta }}\] and \[\cos 2\theta = \dfrac{{1 - {{\tan }^2}\theta }}{{1 + {{\tan }^2}\theta }}\].
So, \[x = \dfrac{{3 \times \dfrac{{2\tan \alpha }}{{1 + {{\tan }^2}\alpha }}}}{{5 + 3 \times \dfrac{{1 - {{\tan }^2}\alpha }}{{1 + {{\tan }^2}\alpha }}}} = \dfrac{{6\tan \alpha }}{{5\left( {1 + {{\tan }^2}\alpha } \right) + 3\left( {1 - {{\tan }^2}\alpha } \right)}}\]
Opening the brackets and simplifying,
\[x = \dfrac{{6\tan \alpha }}{{5 + 5{{\tan }^2}\alpha + 3 - 3{{\tan }^2}\alpha }} = \dfrac{{6\tan \alpha }}{{8 + 2{{\tan }^2}\alpha }} = \dfrac{{3\tan \alpha }}{{4 + {{\tan }^2}\alpha }}\]
Now, \[x = \dfrac{{\dfrac{3}{4}\tan \alpha }}{{1 + \dfrac{1}{4}{{\tan }^2}\alpha }} = \dfrac{{\tan \alpha - \dfrac{1}{4}\tan \alpha }}{{1 + \dfrac{1}{4}\tan \alpha \times \tan \alpha }}\]
So, \[{\tan ^{ - 1}}x = {\tan ^{ - 1}}\left( {\dfrac{{\tan \alpha - \dfrac{1}{4}\tan \alpha }}{{1 + \dfrac{1}{4}\tan \alpha \times \tan \alpha }}} \right)\]
Now, it has been given that,
\[{\tan ^{ - 1}}x + {\tan ^{ - 1}}y\]
\[ = {\tan ^{ - 1}}\dfrac{{x + y}}{{1 - xy}},xy < 1\]
\[ = \pi + {\tan ^{ - 1}}\dfrac{{x + y}}{{1 - xy}},xy > 1\]
So, \[{\tan ^{ - 1}}\left( {\dfrac{{\tan \alpha - \dfrac{1}{4}\tan \alpha }}{{1 + \dfrac{1}{4}\tan \alpha \times \tan \alpha }}} \right) = {\tan ^{ - 1}}\left( {\tan \left( \alpha \right)} \right) - {\tan ^{ - 1}}\left( {\dfrac{{\tan \alpha }}{4}} \right) = \alpha - {\tan ^{ - 1}}\left( {\dfrac{{\tan \alpha }}{4}} \right)\]
Now, we have,
\[A = \alpha - {\tan ^{ - 1}}\left( {\dfrac{{\tan \alpha }}{4}} \right) + {\tan ^{ - 1}}\left( {\dfrac{{\tan \alpha }}{4}} \right) = \alpha \]
Hence, the correct option is A.
Note: In the given question, we had to simplify an inverse expression of trigonometry. We solved it by simplifying the expression which was the argument of the inverse expression. So, to solve that, we must know the formulae and their results. Then we just used the standard results and solved for our answer.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

Give 10 examples of unisexual and bisexual flowers

