
If we are given an inverse trigonometric expression as $y={{\sin }^{-1}}\left( 3x \right)+{{\sec }^{-1}}\left( \dfrac{1}{3x} \right)$, then find the value of $\dfrac{dy}{dx}$.
Answer
597k+ views
Hint: We will use the differentiation of inverse trigonometric formulas for inverse sine and secant terms. These are given by $\dfrac{d}{dx}{{\sin }^{-1}}\left( x \right)=\dfrac{1}{\sqrt{1-{{x}^{2}}}}$ where $1-{{x}^{2}}\ne 0$ and $\dfrac{d}{dx}{{\sec }^{-1}}\left( x \right)=\dfrac{1}{{{x}^{2}}\sqrt{1-\dfrac{1}{{{x}^{2}}}}}$ where $x\ne -1,0,1$. With the help of these formulas we will be able to solve the question.
Complete step-by-step answer:
Now, we will consider the inverse trigonometric expression $y={{\sin }^{-1}}\left( 3x \right)+{{\sec }^{-1}}\left( \dfrac{1}{3x} \right)$...(i). We will differentiate equation (i) with respect of x. Therefore we have $\dfrac{d}{dx}y=\dfrac{d}{dx}{{\sin }^{-1}}\left( 3x \right)+\dfrac{d}{dx}{{\sec }^{-1}}\left( \dfrac{1}{3x} \right)$...(ii).
Now we will consider the term $\dfrac{d}{dx}{{\sin }^{-1}}\left( 3x \right)$ and find its value by using the formula $\dfrac{d}{dx}{{\sin }^{-1}}\left( x \right)=\dfrac{1}{\sqrt{1-{{x}^{2}}}}$ where $1-{{x}^{2}}\ne 0$. After this we get
$\begin{align}
& \dfrac{d}{dx}{{\sin }^{-1}}\left( 3x \right)=\dfrac{1}{\sqrt{1-{{\left( 3x \right)}^{2}}}}\times 3 \\
& \Rightarrow \dfrac{d}{dx}{{\sin }^{-1}}\left( 3x \right)=\dfrac{3}{\sqrt{1-9{{x}^{2}}}} \\
\end{align}$
Here, ${{c}_{1}}$ is any arbitrary constant. Now we will consider the term $\dfrac{d}{dx}{{\sec }^{-1}}\left( \dfrac{1}{3x} \right)$. At this step we will apply the formula and $\dfrac{d}{dx}{{\sec }^{-1}}\left( x \right)=\dfrac{1}{{{x}^{2}}\sqrt{1-\dfrac{1}{{{x}^{2}}}}}$ where $x\ne -1,0,1$ to evaluate it. Thus, we will get
$\dfrac{d}{dx}{{\sec }^{-1}}\left( \dfrac{1}{3x} \right)=\dfrac{1}{{{\left( \dfrac{1}{3x} \right)}^{2}}\sqrt{1-\dfrac{1}{{{\left( \dfrac{1}{3x} \right)}^{2}}}}}\times \dfrac{d}{dx}\left( \dfrac{1}{3x} \right)$. The value of $\dfrac{d}{dx}\left( \dfrac{1}{3x} \right)$ can be carried out by solving it like so, $\dfrac{d}{dx}\left( \dfrac{1}{3x} \right)=\dfrac{1}{3}\dfrac{d}{dx}\left( \dfrac{1}{x} \right)$. As we know that $\dfrac{d}{dx}\left( \dfrac{1}{x} \right)=-\dfrac{1}{{{x}^{2}}}$. Therefore we get
$\begin{align}
& \dfrac{d}{dx}\left( \dfrac{1}{3x} \right)=\dfrac{1}{3}\times -\dfrac{1}{{{x}^{2}}} \\
& \Rightarrow \dfrac{d}{dx}\left( \dfrac{1}{3x} \right)=-\dfrac{1}{3{{x}^{2}}} \\
\end{align}$
After substituting this value in above equation we will have
$\begin{align}
& \dfrac{d}{dx}{{\sec }^{-1}}\left( \dfrac{1}{3x} \right)=\dfrac{1}{\dfrac{1}{9{{x}^{2}}}\sqrt{1-\dfrac{1}{\dfrac{1}{9{{x}^{2}}}}}}\times \left( -\dfrac{1}{3{{x}^{2}}} \right) \\
& \Rightarrow \dfrac{d}{dx}{{\sec }^{-1}}\left( \dfrac{1}{3x} \right)=-\dfrac{1}{\dfrac{3{{x}^{2}}}{9{{x}^{2}}}\sqrt{1-\dfrac{1}{\dfrac{1}{9{{x}^{2}}}}}} \\
& \Rightarrow \dfrac{d}{dx}{{\sec }^{-1}}\left( \dfrac{1}{3x} \right)=-\dfrac{1}{\dfrac{1}{3}\sqrt{1-\dfrac{1}{\dfrac{1}{9{{x}^{2}}}}}} \\
\end{align}$
Here, ${{c}_{4}}$ is any arbitrary constant. Now we will use the property $\dfrac{a}{\dfrac{b}{c}}=\dfrac{ac}{b}$ in $\dfrac{d}{dx}{{\sec }^{-1}}\left( \dfrac{1}{3x} \right)=-\dfrac{1}{\dfrac{1}{3}\sqrt{1-\dfrac{1}{\dfrac{1}{9{{x}^{2}}}}}}$ so, to get $\dfrac{d}{dx}{{\sec }^{-1}}\left( \dfrac{1}{3x} \right)=-\dfrac{3}{\sqrt{1-9{{x}^{2}}}}$. After this we are going to substitute these values in equation (ii). This results into
$\begin{align}
& \dfrac{d}{dx}y=\dfrac{3}{\sqrt{1-9{{x}^{2}}}}+-\dfrac{3}{\sqrt{1-9{{x}^{2}}}} \\
& \Rightarrow \dfrac{d}{dx}y=0 \\
\end{align}$
Hence, the value of $\dfrac{dy}{dx}$ is 0.
Note: We can also use the basic triple angle formula of sine which is given by $\sin \left( 3x \right)=3\sin \left( x \right)-4{{\sin }^{3}}\left( x \right)$. With the help of this formula we can find out $\sin \left( 3x \right)+4{{\sin }^{3}}\left( x \right)=3\sin \left( x \right)$ and put it in the equation (i). Then we can solve it further and get a different equation. Here all the constants as c are the arbitrary constants. This means that with the presence of these in the solution will never hinder the answer. As in this question we do not have definite values this is why we are using the constants while using the differentiation operation.
s.
Complete step-by-step answer:
Now, we will consider the inverse trigonometric expression $y={{\sin }^{-1}}\left( 3x \right)+{{\sec }^{-1}}\left( \dfrac{1}{3x} \right)$...(i). We will differentiate equation (i) with respect of x. Therefore we have $\dfrac{d}{dx}y=\dfrac{d}{dx}{{\sin }^{-1}}\left( 3x \right)+\dfrac{d}{dx}{{\sec }^{-1}}\left( \dfrac{1}{3x} \right)$...(ii).
Now we will consider the term $\dfrac{d}{dx}{{\sin }^{-1}}\left( 3x \right)$ and find its value by using the formula $\dfrac{d}{dx}{{\sin }^{-1}}\left( x \right)=\dfrac{1}{\sqrt{1-{{x}^{2}}}}$ where $1-{{x}^{2}}\ne 0$. After this we get
$\begin{align}
& \dfrac{d}{dx}{{\sin }^{-1}}\left( 3x \right)=\dfrac{1}{\sqrt{1-{{\left( 3x \right)}^{2}}}}\times 3 \\
& \Rightarrow \dfrac{d}{dx}{{\sin }^{-1}}\left( 3x \right)=\dfrac{3}{\sqrt{1-9{{x}^{2}}}} \\
\end{align}$
Here, ${{c}_{1}}$ is any arbitrary constant. Now we will consider the term $\dfrac{d}{dx}{{\sec }^{-1}}\left( \dfrac{1}{3x} \right)$. At this step we will apply the formula and $\dfrac{d}{dx}{{\sec }^{-1}}\left( x \right)=\dfrac{1}{{{x}^{2}}\sqrt{1-\dfrac{1}{{{x}^{2}}}}}$ where $x\ne -1,0,1$ to evaluate it. Thus, we will get
$\dfrac{d}{dx}{{\sec }^{-1}}\left( \dfrac{1}{3x} \right)=\dfrac{1}{{{\left( \dfrac{1}{3x} \right)}^{2}}\sqrt{1-\dfrac{1}{{{\left( \dfrac{1}{3x} \right)}^{2}}}}}\times \dfrac{d}{dx}\left( \dfrac{1}{3x} \right)$. The value of $\dfrac{d}{dx}\left( \dfrac{1}{3x} \right)$ can be carried out by solving it like so, $\dfrac{d}{dx}\left( \dfrac{1}{3x} \right)=\dfrac{1}{3}\dfrac{d}{dx}\left( \dfrac{1}{x} \right)$. As we know that $\dfrac{d}{dx}\left( \dfrac{1}{x} \right)=-\dfrac{1}{{{x}^{2}}}$. Therefore we get
$\begin{align}
& \dfrac{d}{dx}\left( \dfrac{1}{3x} \right)=\dfrac{1}{3}\times -\dfrac{1}{{{x}^{2}}} \\
& \Rightarrow \dfrac{d}{dx}\left( \dfrac{1}{3x} \right)=-\dfrac{1}{3{{x}^{2}}} \\
\end{align}$
After substituting this value in above equation we will have
$\begin{align}
& \dfrac{d}{dx}{{\sec }^{-1}}\left( \dfrac{1}{3x} \right)=\dfrac{1}{\dfrac{1}{9{{x}^{2}}}\sqrt{1-\dfrac{1}{\dfrac{1}{9{{x}^{2}}}}}}\times \left( -\dfrac{1}{3{{x}^{2}}} \right) \\
& \Rightarrow \dfrac{d}{dx}{{\sec }^{-1}}\left( \dfrac{1}{3x} \right)=-\dfrac{1}{\dfrac{3{{x}^{2}}}{9{{x}^{2}}}\sqrt{1-\dfrac{1}{\dfrac{1}{9{{x}^{2}}}}}} \\
& \Rightarrow \dfrac{d}{dx}{{\sec }^{-1}}\left( \dfrac{1}{3x} \right)=-\dfrac{1}{\dfrac{1}{3}\sqrt{1-\dfrac{1}{\dfrac{1}{9{{x}^{2}}}}}} \\
\end{align}$
Here, ${{c}_{4}}$ is any arbitrary constant. Now we will use the property $\dfrac{a}{\dfrac{b}{c}}=\dfrac{ac}{b}$ in $\dfrac{d}{dx}{{\sec }^{-1}}\left( \dfrac{1}{3x} \right)=-\dfrac{1}{\dfrac{1}{3}\sqrt{1-\dfrac{1}{\dfrac{1}{9{{x}^{2}}}}}}$ so, to get $\dfrac{d}{dx}{{\sec }^{-1}}\left( \dfrac{1}{3x} \right)=-\dfrac{3}{\sqrt{1-9{{x}^{2}}}}$. After this we are going to substitute these values in equation (ii). This results into
$\begin{align}
& \dfrac{d}{dx}y=\dfrac{3}{\sqrt{1-9{{x}^{2}}}}+-\dfrac{3}{\sqrt{1-9{{x}^{2}}}} \\
& \Rightarrow \dfrac{d}{dx}y=0 \\
\end{align}$
Hence, the value of $\dfrac{dy}{dx}$ is 0.
Note: We can also use the basic triple angle formula of sine which is given by $\sin \left( 3x \right)=3\sin \left( x \right)-4{{\sin }^{3}}\left( x \right)$. With the help of this formula we can find out $\sin \left( 3x \right)+4{{\sin }^{3}}\left( x \right)=3\sin \left( x \right)$ and put it in the equation (i). Then we can solve it further and get a different equation. Here all the constants as c are the arbitrary constants. This means that with the presence of these in the solution will never hinder the answer. As in this question we do not have definite values this is why we are using the constants while using the differentiation operation.
s.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

