
If \[\vec{a}={{a}_{1}}\hat{i}+{{a}_{2}}\hat{j}-{{a}_{3}}\hat{k}\] and \[\vec{b}={{b}_{1}}\hat{i}+{{b}_{2}}\hat{j}-{{b}_{3}}\hat{k}\] then find the value of $\vec{a}\times \vec{b}$
Answer
510k+ views
Hint: We have to do the cross product of two given vectors the cross product of two vectors is given by:
$\vec{A}\times \vec{B}=\left| \begin{matrix}
{\hat{i}} & {\hat{j}} & {\hat{k}} \\
{{x}_{1}} & {{y}_{1}} & {{z}_{1}} \\
{{x}_{2}} & {{y}_{2}} & {{z}_{2}} \\
\end{matrix} \right|$
Complete step-by-step answer:
When the vectors are $\vec{A}={{x}_{1}}\hat{i}+{{y}_{1}}\hat{j}+{{z}_{1}}\hat{k}$ and $\vec{B}={{x}_{2}}\hat{i}+{{y}_{2}}\hat{j}+{{z}_{2}}\hat{k}$
In the question given above, we have to do the cross product or vector product of two given vectors $\vec{a}$ and $\vec{b}$ . The cross product or vector product is a binary operation on two vectors in three-dimensional space and is denoted by the symbol (X). The cross product of the two vectors is a vector perpendicular to both the vectors and thus the resultant vector will be normal to the plane of vectors containing them. The cross product of any two vectors will be given by the determinant:
$\vec{A}\times \vec{B}=\left| \begin{matrix}
{\hat{i}} & {\hat{j}} & {\hat{k}} \\
{{x}_{1}} & {{y}_{1}} & {{z}_{1}} \\
{{x}_{2}} & {{y}_{2}} & {{z}_{2}} \\
\end{matrix} \right|$
When the vectors are $\vec{A}={{x}_{1}}\hat{i}+{{y}_{1}}\hat{j}+{{z}_{1}}\hat{k}$ and $\vec{B}={{x}_{2}}\hat{i}+{{y}_{2}}\hat{j}+{{z}_{2}}\hat{k}$
Here, $\hat{i}$ is the unit vector in x – direction, $\hat{j}$ is the unit vector in y direction and $\hat{k}$ is the unit vector in z direction. Thus, the cross product of the vectors given in question is:
$\vec{a}\times \vec{b}=\left| \begin{matrix}
{\hat{i}} & {\hat{j}} & {\hat{k}} \\
{{a}_{1}} & {{a}_{2}} & -{{a}_{3}} \\
{{b}_{1}} & {{b}_{2}} & -{{b}_{3}} \\
\end{matrix} \right|$
The above determinant of order 3 can be solved as shown below:
\[\vec{a}\times \vec{b}=\hat{i}\left| \begin{matrix}
{{a}_{2}} & -{{a}_{3}} \\
{{b}_{2}} & -{{b}_{3}} \\
\end{matrix} \right|-\hat{j}\left| \begin{matrix}
{{a}_{1}} & -{{a}_{3}} \\
{{b}_{1}} & -{{b}_{3}} \\
\end{matrix} \right|+\hat{k}\left| \begin{matrix}
{{a}_{1}} & {{a}_{2}} \\
{{b}_{1}} & {{b}_{2}} \\
\end{matrix} \right|\]
Now, we can solve these determinants of order 2 by simply cross multiplying and subtracting the product. Thus, it is done as shown:
$\vec{a}\times \vec{b}-=\hat{i}\left[ \left( {{a}_{2}} \right)\left( -{{b}_{3}} \right)-\left( -{{a}_{3}} \right)\left( {{b}_{2}} \right) \right]-\hat{j}\left[ \left( {{a}_{1}} \right)\left( -{{b}_{3}} \right)-\left( -{{a}_{3}} \right)\left( {{b}_{1}} \right) \right]+\hat{k}\left[ \left( {{a}_{1}} \right)\left( {{b}_{2}} \right)-\left( {{a}_{2}} \right)\left( {{b}_{1}} \right) \right]$
\[\begin{align}
& \Rightarrow \vec{a}\times \vec{b}=\hat{i}\left[ -{{a}_{2}}{{b}_{3}}+{{a}_{3}}{{b}_{2}} \right]-\hat{j}\left[ -{{a}_{1}}{{b}_{3}}+{{a}_{3}}{{b}_{1}} \right]+\hat{k}\left[ {{a}_{1}}{{b}_{2}}-{{a}_{2}}{{b}_{1}} \right] \\
& \Rightarrow \vec{a}\times \vec{b}=\hat{i}\left[ {{a}_{3}}{{b}_{2}}-{{a}_{2}}{{b}_{3}} \right]+\hat{j}\left[ {{a}_{3}}{{b}_{1}}-{{a}_{1}}{{b}_{3}} \right]+\hat{k}\left[ {{a}_{1}}{{b}_{2}}-{{a}_{2}}{{b}_{1}} \right] \\
& \Rightarrow \vec{a}\times \vec{b}=\left( {{a}_{3}}{{b}_{2}}-{{a}_{2}}{{b}_{3}} \right)\hat{i}+\left( {{a}_{3}}{{b}_{1}}-{{a}_{1}}{{b}_{3}} \right)\hat{j}+\left( {{a}_{1}}{{b}_{2}}-{{a}_{2}}{{b}_{1}} \right)\hat{k} \\
\end{align}\]
Thus, above is the required cross product we wanted to calculate. The above cross product is perpendicular to the plane containing vectors $\vec{a}$ and $\vec{b}$ .
Note: We could have also used the formula of cross product to solve the question. If \[\vec{a}={{a}_{1}}\hat{i}+{{a}_{2}}\hat{j}+{{a}_{3}}\hat{k}\] and \[\vec{b}={{b}_{1}}\hat{i}+{{b}_{2}}\hat{j}+{{b}_{3}}\hat{k}\] then the cross product is given by $\vec{a}\times \vec{b}=\left| {\vec{a}} \right|\left| {\vec{b}} \right|\sin \theta \hat{n}$ , where $\left| {\vec{a}} \right|$ and $\left| {\vec{b}} \right|$ are the length of vectors $\vec{a}$ and $\vec{b}$ and $\theta $ is the angle between the two vectors. $\hat{n}$ is the vector perpendicular to both the vectors $\vec{a}$ and $\vec{b}$
$\vec{A}\times \vec{B}=\left| \begin{matrix}
{\hat{i}} & {\hat{j}} & {\hat{k}} \\
{{x}_{1}} & {{y}_{1}} & {{z}_{1}} \\
{{x}_{2}} & {{y}_{2}} & {{z}_{2}} \\
\end{matrix} \right|$
Complete step-by-step answer:
When the vectors are $\vec{A}={{x}_{1}}\hat{i}+{{y}_{1}}\hat{j}+{{z}_{1}}\hat{k}$ and $\vec{B}={{x}_{2}}\hat{i}+{{y}_{2}}\hat{j}+{{z}_{2}}\hat{k}$
In the question given above, we have to do the cross product or vector product of two given vectors $\vec{a}$ and $\vec{b}$ . The cross product or vector product is a binary operation on two vectors in three-dimensional space and is denoted by the symbol (X). The cross product of the two vectors is a vector perpendicular to both the vectors and thus the resultant vector will be normal to the plane of vectors containing them. The cross product of any two vectors will be given by the determinant:
$\vec{A}\times \vec{B}=\left| \begin{matrix}
{\hat{i}} & {\hat{j}} & {\hat{k}} \\
{{x}_{1}} & {{y}_{1}} & {{z}_{1}} \\
{{x}_{2}} & {{y}_{2}} & {{z}_{2}} \\
\end{matrix} \right|$
When the vectors are $\vec{A}={{x}_{1}}\hat{i}+{{y}_{1}}\hat{j}+{{z}_{1}}\hat{k}$ and $\vec{B}={{x}_{2}}\hat{i}+{{y}_{2}}\hat{j}+{{z}_{2}}\hat{k}$
Here, $\hat{i}$ is the unit vector in x – direction, $\hat{j}$ is the unit vector in y direction and $\hat{k}$ is the unit vector in z direction. Thus, the cross product of the vectors given in question is:
$\vec{a}\times \vec{b}=\left| \begin{matrix}
{\hat{i}} & {\hat{j}} & {\hat{k}} \\
{{a}_{1}} & {{a}_{2}} & -{{a}_{3}} \\
{{b}_{1}} & {{b}_{2}} & -{{b}_{3}} \\
\end{matrix} \right|$
The above determinant of order 3 can be solved as shown below:
\[\vec{a}\times \vec{b}=\hat{i}\left| \begin{matrix}
{{a}_{2}} & -{{a}_{3}} \\
{{b}_{2}} & -{{b}_{3}} \\
\end{matrix} \right|-\hat{j}\left| \begin{matrix}
{{a}_{1}} & -{{a}_{3}} \\
{{b}_{1}} & -{{b}_{3}} \\
\end{matrix} \right|+\hat{k}\left| \begin{matrix}
{{a}_{1}} & {{a}_{2}} \\
{{b}_{1}} & {{b}_{2}} \\
\end{matrix} \right|\]
Now, we can solve these determinants of order 2 by simply cross multiplying and subtracting the product. Thus, it is done as shown:
$\vec{a}\times \vec{b}-=\hat{i}\left[ \left( {{a}_{2}} \right)\left( -{{b}_{3}} \right)-\left( -{{a}_{3}} \right)\left( {{b}_{2}} \right) \right]-\hat{j}\left[ \left( {{a}_{1}} \right)\left( -{{b}_{3}} \right)-\left( -{{a}_{3}} \right)\left( {{b}_{1}} \right) \right]+\hat{k}\left[ \left( {{a}_{1}} \right)\left( {{b}_{2}} \right)-\left( {{a}_{2}} \right)\left( {{b}_{1}} \right) \right]$
\[\begin{align}
& \Rightarrow \vec{a}\times \vec{b}=\hat{i}\left[ -{{a}_{2}}{{b}_{3}}+{{a}_{3}}{{b}_{2}} \right]-\hat{j}\left[ -{{a}_{1}}{{b}_{3}}+{{a}_{3}}{{b}_{1}} \right]+\hat{k}\left[ {{a}_{1}}{{b}_{2}}-{{a}_{2}}{{b}_{1}} \right] \\
& \Rightarrow \vec{a}\times \vec{b}=\hat{i}\left[ {{a}_{3}}{{b}_{2}}-{{a}_{2}}{{b}_{3}} \right]+\hat{j}\left[ {{a}_{3}}{{b}_{1}}-{{a}_{1}}{{b}_{3}} \right]+\hat{k}\left[ {{a}_{1}}{{b}_{2}}-{{a}_{2}}{{b}_{1}} \right] \\
& \Rightarrow \vec{a}\times \vec{b}=\left( {{a}_{3}}{{b}_{2}}-{{a}_{2}}{{b}_{3}} \right)\hat{i}+\left( {{a}_{3}}{{b}_{1}}-{{a}_{1}}{{b}_{3}} \right)\hat{j}+\left( {{a}_{1}}{{b}_{2}}-{{a}_{2}}{{b}_{1}} \right)\hat{k} \\
\end{align}\]
Thus, above is the required cross product we wanted to calculate. The above cross product is perpendicular to the plane containing vectors $\vec{a}$ and $\vec{b}$ .
Note: We could have also used the formula of cross product to solve the question. If \[\vec{a}={{a}_{1}}\hat{i}+{{a}_{2}}\hat{j}+{{a}_{3}}\hat{k}\] and \[\vec{b}={{b}_{1}}\hat{i}+{{b}_{2}}\hat{j}+{{b}_{3}}\hat{k}\] then the cross product is given by $\vec{a}\times \vec{b}=\left| {\vec{a}} \right|\left| {\vec{b}} \right|\sin \theta \hat{n}$ , where $\left| {\vec{a}} \right|$ and $\left| {\vec{b}} \right|$ are the length of vectors $\vec{a}$ and $\vec{b}$ and $\theta $ is the angle between the two vectors. $\hat{n}$ is the vector perpendicular to both the vectors $\vec{a}$ and $\vec{b}$
Recently Updated Pages
Master Class 12 Social Science: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Class 10 Question and Answer - Your Ultimate Solutions Guide

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
Is Cellular respiration an Oxidation or Reduction class 11 chemistry CBSE

In electron dot structure the valence shell electrons class 11 chemistry CBSE

What is the Pitti Island famous for ABird Sanctuary class 11 social science CBSE

State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells
