
If $ \vec u = \hat j + 4\hat k $ , $ \vec v = \hat i - 3\hat k $ , and $ \vec w = \cos \theta \hat i + \sin \theta \hat j $ are vectors in 3 – dimensional space, then, the maximum possible value of \[\left| {\vec u \times \vec v.\vec w} \right|\] is?
A) $ \sqrt {14} $
B) 5
C) 7
D) $ \sqrt {13} $
Answer
575.7k+ views
Hint: We need to find the determinant of the given quantity, we can ignore the type of product signs amongst them, then an equation of function will be obtained by the derivative of it we can find its maximum value.
$ \tan \theta = \dfrac{P}{B},\sin \theta = \dfrac{P}{H},\cos \theta = \dfrac{B}{H} $
Where P is the perpendicular, B is base and H is hypotenuse.
Complete step-by-step answer:
We have been given three vectors: $ \vec u = \hat j + 4\hat k $ , $ \vec v = \hat i - 3\hat k $ and $ \vec w = \cos \theta \hat i + \sin \theta \hat j $ and we are required to find their determinant. We do not need to consider their sign of product (dot or cross).
The given vectors with all the unit vectors can be written as:
$ \vec u = 0\hat i + \hat j + 4\hat k $ , $ \vec v = \hat i + 0\hat j - 3\hat k $ , $ \vec w = \cos \theta \hat i + \sin \theta \hat j + 0\hat k $
We can find the required determinant using the coefficients of the unit vectors.
\[\left| {\vec u \times \vec v.\vec w} \right| = \left| {\begin{array}{*{20}{c}}
0&1&4 \\
1&0&{ - 3} \\
{\cos \theta }&{\sin \theta }&0
\end{array}} \right|\]
Calculating this determinant:
\[
\Rightarrow \left| {\vec u \times \vec v.\vec w} \right| = \left[ {0\left( {0 \times 0 - ( - 3)\sin \theta } \right)} \right] - 1\left[ {1 \times 0 - ( - 3)\cos \theta } \right] + 4\left[ {1 \times \sin \theta + 0 \times \cos \theta } \right] \\
\left| {\vec u \times \vec v.\vec w} \right| = - 3\cos \theta + 4\sin \theta \\
\left| {\vec u \times \vec v.\vec w} \right| = 4\sin \theta - 3\cos \theta \\
\]
Let this value be the function of angle $ \theta $ , then:
$ f\left( \theta \right) = 4\sin \theta - 3\cos \theta $
The maximum value of any function is given by the value of its variable when its derivative is equal to zero.
The differentiation of function is:
$
\Rightarrow f'\left( \theta \right) = 4\cos \theta + 3\sin \theta \\
\left(
\because f'\left( {\cos \theta } \right) = - \sin \theta \ , f'\left( {\sin \theta } \right) = \cos \theta \
\right) \
$
The value obtained when we equate it to 0 is:
$ 4\cos \theta + 3\sin \theta = 0 $
Dividing both sides by $ \cos \theta $ , we get:
$
4 + 3\tan \theta = 0 \\
3\tan \theta = - 4 \\
\Rightarrow \tan \theta = \dfrac{{ - 4}}{3} \\
$
Now, $ \tan \theta = \dfrac{P}{B} $ , so:
Perpendicular (P) = -4
Base (B) = 3
Then according to the Pythagoras theorem:
$
{H^2} = {P^2} + {B^2} \\
\Rightarrow {H^2} = {( - 4)^2} + {(3)^2} \\
\Rightarrow {H^2} = 16 + 9 \\
\Rightarrow {H^2} = 25 \\
\Rightarrow \sqrt {{H^2}} = \sqrt {25} \\
\Rightarrow H = 5 \\
$
The value of sine and cosine of angles can be calculated as:
$
\sin \theta = \dfrac{P}{H} \\
\Rightarrow \sin \theta = \dfrac{{ - 4}}{5} \\
\cos \theta = \dfrac{B}{H} \\
\Rightarrow \cos \theta = \dfrac{3}{5} \\
$
Substituting these values in the function and finding the magnitude:
$
\left| {f\left( \theta \right)} \right| = \left| {4 \times \left( { - \dfrac{4}{5}} \right) - 3 \times \dfrac{3}{5}} \right| \\
\left| {f\left( \theta \right)} \right| = 5 \\
$
Therefore, the maximum possible value of \[\left| {\vec u \times \vec v.\vec w} \right|\] is 5 and the correct option is B.
So, the correct answer is “Option B”.
Note: Here, $ \hat i,\hat j,\hat k $ used are called unit vectors and represent the vector along x, y and z axis respectively.
When we have to find the maximum possible value of any function in one variable, we differentiate it and equate the same to zero so as to obtain the value of the variable and then it is substituted in the function which then gives the maximum value.
$ \tan \theta = \dfrac{P}{B},\sin \theta = \dfrac{P}{H},\cos \theta = \dfrac{B}{H} $
Where P is the perpendicular, B is base and H is hypotenuse.
Complete step-by-step answer:
We have been given three vectors: $ \vec u = \hat j + 4\hat k $ , $ \vec v = \hat i - 3\hat k $ and $ \vec w = \cos \theta \hat i + \sin \theta \hat j $ and we are required to find their determinant. We do not need to consider their sign of product (dot or cross).
The given vectors with all the unit vectors can be written as:
$ \vec u = 0\hat i + \hat j + 4\hat k $ , $ \vec v = \hat i + 0\hat j - 3\hat k $ , $ \vec w = \cos \theta \hat i + \sin \theta \hat j + 0\hat k $
We can find the required determinant using the coefficients of the unit vectors.
\[\left| {\vec u \times \vec v.\vec w} \right| = \left| {\begin{array}{*{20}{c}}
0&1&4 \\
1&0&{ - 3} \\
{\cos \theta }&{\sin \theta }&0
\end{array}} \right|\]
Calculating this determinant:
\[
\Rightarrow \left| {\vec u \times \vec v.\vec w} \right| = \left[ {0\left( {0 \times 0 - ( - 3)\sin \theta } \right)} \right] - 1\left[ {1 \times 0 - ( - 3)\cos \theta } \right] + 4\left[ {1 \times \sin \theta + 0 \times \cos \theta } \right] \\
\left| {\vec u \times \vec v.\vec w} \right| = - 3\cos \theta + 4\sin \theta \\
\left| {\vec u \times \vec v.\vec w} \right| = 4\sin \theta - 3\cos \theta \\
\]
Let this value be the function of angle $ \theta $ , then:
$ f\left( \theta \right) = 4\sin \theta - 3\cos \theta $
The maximum value of any function is given by the value of its variable when its derivative is equal to zero.
The differentiation of function is:
$
\Rightarrow f'\left( \theta \right) = 4\cos \theta + 3\sin \theta \\
\left(
\because f'\left( {\cos \theta } \right) = - \sin \theta \ , f'\left( {\sin \theta } \right) = \cos \theta \
\right) \
$
The value obtained when we equate it to 0 is:
$ 4\cos \theta + 3\sin \theta = 0 $
Dividing both sides by $ \cos \theta $ , we get:
$
4 + 3\tan \theta = 0 \\
3\tan \theta = - 4 \\
\Rightarrow \tan \theta = \dfrac{{ - 4}}{3} \\
$
Now, $ \tan \theta = \dfrac{P}{B} $ , so:
Perpendicular (P) = -4
Base (B) = 3
Then according to the Pythagoras theorem:
$
{H^2} = {P^2} + {B^2} \\
\Rightarrow {H^2} = {( - 4)^2} + {(3)^2} \\
\Rightarrow {H^2} = 16 + 9 \\
\Rightarrow {H^2} = 25 \\
\Rightarrow \sqrt {{H^2}} = \sqrt {25} \\
\Rightarrow H = 5 \\
$
The value of sine and cosine of angles can be calculated as:
$
\sin \theta = \dfrac{P}{H} \\
\Rightarrow \sin \theta = \dfrac{{ - 4}}{5} \\
\cos \theta = \dfrac{B}{H} \\
\Rightarrow \cos \theta = \dfrac{3}{5} \\
$
Substituting these values in the function and finding the magnitude:
$
\left| {f\left( \theta \right)} \right| = \left| {4 \times \left( { - \dfrac{4}{5}} \right) - 3 \times \dfrac{3}{5}} \right| \\
\left| {f\left( \theta \right)} \right| = 5 \\
$
Therefore, the maximum possible value of \[\left| {\vec u \times \vec v.\vec w} \right|\] is 5 and the correct option is B.
So, the correct answer is “Option B”.
Note: Here, $ \hat i,\hat j,\hat k $ used are called unit vectors and represent the vector along x, y and z axis respectively.
When we have to find the maximum possible value of any function in one variable, we differentiate it and equate the same to zero so as to obtain the value of the variable and then it is substituted in the function which then gives the maximum value.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

