
If $\vec a,\vec b$ and $\vec c$ are unit vectors such that $\vec a + 2\vec b + 2\vec c = \vec 0$, the $\left| {\vec a \times \vec c} \right|$ is equal to:
(A) $\dfrac{1}{4}$
(B) $\dfrac{{\sqrt {15} }}{4}$
(C) $\dfrac{{15}}{{16}}$
(D) $\dfrac{{\sqrt {15} }}{{16}}$
Answer
581.1k+ views
Hint: Since, $\vec a,\vec b$ and $\vec c$ are unit vectors. Therefore, $\left| {\vec a} \right| = \left| {\vec b} \right| = \left| {\vec c} \right| = 1$. Use the formulas \[\vec a \cdot \vec a = {\left| {\vec a} \right|^2}\] and \[\vec a \cdot \vec b = \vec b \cdot \vec a\] to solve the given relation $\vec a + 2\vec b + 2\vec c = \vec 0$.
Complete step-by-step answer:
Given, $\vec a,\vec b$ and $\vec c$ are unit vectors.
Therefore, magnitude $\vec a,\vec b$ and $\vec c$ is $1$.
So, $\left| {\vec a} \right| = \left| {\vec b} \right| = \left| {\vec c} \right| = 1$
We have, $\vec a + 2\vec b + 2\vec c = \vec 0$
$ \Rightarrow \vec a + 2\vec c = - 2\vec b$
On squaring both sides,
$ \Rightarrow {\left| {\vec a + 2\vec c} \right|^2} = {\left| { - 2\vec b} \right|^2}$
Using \[{\left| {\vec a} \right|^2} = \vec a \cdot \vec a\],
$ \Rightarrow \left( {\vec a + 2\vec c} \right) \cdot \left( {\vec a + 2\vec c} \right) = \left( { - 2\vec b} \right) \cdot \left( { - 2\vec b} \right)$
\[ \Rightarrow \vec a \cdot \vec a + 2\vec a \cdot \vec c + 2\vec c \cdot \vec a + 4\vec c \cdot \vec c = 4\vec b \cdot \vec b\]
Now using \[\vec a \cdot \vec a = {\left| {\vec a} \right|^2}\] and \[\vec a \cdot \vec b = \vec b \cdot \vec a\],
\[ \Rightarrow {\left| {\vec a} \right|^2} + 2\vec a \cdot \vec c + 2\vec a \cdot \vec c + 4{\left| {\vec c} \right|^2} = 4{\left| {\vec b} \right|^2}\]
\[ \Rightarrow {\left( 1 \right)^2} + 4\vec a \cdot \vec c + 4{\left( 1 \right)^2} = 4{\left( 1 \right)^2}\]
\[ \Rightarrow 1 + 4\vec a \cdot \vec c + 4 = 4\]
\[ \Rightarrow 4\vec a \cdot \vec c = - 1\]
\[ \Rightarrow \vec a \cdot \vec c = \dfrac{{ - 1}}{4}\]
We have, ${\left| {\vec a \cdot \vec c} \right|^2} + {\left| {\vec a \times \vec c} \right|^2} = 1$ ($\vec a$ and $\vec c$ are unit vectors)
$ \Rightarrow {\left( {\dfrac{{ - 1}}{4}} \right)^2} + {\left| {\vec a \times \vec c} \right|^2} = 1$
$ \Rightarrow \dfrac{1}{{16}} + {\left| {\vec a \times \vec c} \right|^2} = 1$
$ \Rightarrow {\left| {\vec a \times \vec c} \right|^2} = 1 - \dfrac{1}{{16}}$
$ \Rightarrow {\left| {\vec a \times \vec c} \right|^2} = \dfrac{{16 - 1}}{{16}}$
$ \Rightarrow {\left| {\vec a \times \vec c} \right|^2} = \dfrac{{15}}{{16}}$
\[ \Rightarrow \left| {\vec a \times \vec c} \right| = \sqrt {\dfrac{{15}}{{16}}} \]
\[ \Rightarrow \left| {\vec a \times \vec c} \right| = \dfrac{{\sqrt {15} }}{4}\]
Hence, option (B) is the correct answer.
Note: The formula ${\left| {\vec a \cdot \vec c} \right|^2} + {\left| {\vec a \times \vec c} \right|^2} = 1$ can be derived as follows:
We know that, $\vec a \cdot \vec c = \left| {\vec a} \right|\left| {\vec c} \right|\cos \theta $
$ \Rightarrow {\left| {\vec a \cdot \vec c} \right|^2} = {\left| {\vec a} \right|^2}{\left| {\vec c} \right|^2}{\cos ^2}\theta $
We also know that, $\vec a \times \vec c = \left| {\vec a} \right|\left| {\vec c} \right|\sin \theta $
$ \Rightarrow {\left| {\vec a \times \vec c} \right|^2} = {\left| {\vec a} \right|^2}{\left| {\vec c} \right|^2}{\sin ^2}\theta $
Now, ${\left| {\vec a \cdot \vec c} \right|^2} + {\left| {\vec a \times \vec c} \right|^2} = {\left| {\vec a} \right|^2}{\left| {\vec c} \right|^2}{\cos ^2}\theta + {\left| {\vec a} \right|^2}{\left| {\vec c} \right|^2}{\sin ^2}\theta $
$ \Rightarrow {\left| {\vec a \cdot \vec c} \right|^2} + {\left| {\vec a \times \vec c} \right|^2} = {\left| {\vec a} \right|^2}{\left| {\vec c} \right|^2}\left( {{{\cos }^2}\theta + {{\sin }^2}\theta } \right)$
$ \Rightarrow {\left| {\vec a \cdot \vec c} \right|^2} + {\left| {\vec a \times \vec c} \right|^2} = {\left( 1 \right)^2}{\left( 1 \right)^2}\left( 1 \right)$
$\left( {\because {{\sin }^2}\theta + {{\cos }^2}\theta = 1} \right)$
$ \Rightarrow {\left| {\vec a \cdot \vec c} \right|^2} + {\left| {\vec a \times \vec c} \right|^2} = 1$
Complete step-by-step answer:
Given, $\vec a,\vec b$ and $\vec c$ are unit vectors.
Therefore, magnitude $\vec a,\vec b$ and $\vec c$ is $1$.
So, $\left| {\vec a} \right| = \left| {\vec b} \right| = \left| {\vec c} \right| = 1$
We have, $\vec a + 2\vec b + 2\vec c = \vec 0$
$ \Rightarrow \vec a + 2\vec c = - 2\vec b$
On squaring both sides,
$ \Rightarrow {\left| {\vec a + 2\vec c} \right|^2} = {\left| { - 2\vec b} \right|^2}$
Using \[{\left| {\vec a} \right|^2} = \vec a \cdot \vec a\],
$ \Rightarrow \left( {\vec a + 2\vec c} \right) \cdot \left( {\vec a + 2\vec c} \right) = \left( { - 2\vec b} \right) \cdot \left( { - 2\vec b} \right)$
\[ \Rightarrow \vec a \cdot \vec a + 2\vec a \cdot \vec c + 2\vec c \cdot \vec a + 4\vec c \cdot \vec c = 4\vec b \cdot \vec b\]
Now using \[\vec a \cdot \vec a = {\left| {\vec a} \right|^2}\] and \[\vec a \cdot \vec b = \vec b \cdot \vec a\],
\[ \Rightarrow {\left| {\vec a} \right|^2} + 2\vec a \cdot \vec c + 2\vec a \cdot \vec c + 4{\left| {\vec c} \right|^2} = 4{\left| {\vec b} \right|^2}\]
\[ \Rightarrow {\left( 1 \right)^2} + 4\vec a \cdot \vec c + 4{\left( 1 \right)^2} = 4{\left( 1 \right)^2}\]
\[ \Rightarrow 1 + 4\vec a \cdot \vec c + 4 = 4\]
\[ \Rightarrow 4\vec a \cdot \vec c = - 1\]
\[ \Rightarrow \vec a \cdot \vec c = \dfrac{{ - 1}}{4}\]
We have, ${\left| {\vec a \cdot \vec c} \right|^2} + {\left| {\vec a \times \vec c} \right|^2} = 1$ ($\vec a$ and $\vec c$ are unit vectors)
$ \Rightarrow {\left( {\dfrac{{ - 1}}{4}} \right)^2} + {\left| {\vec a \times \vec c} \right|^2} = 1$
$ \Rightarrow \dfrac{1}{{16}} + {\left| {\vec a \times \vec c} \right|^2} = 1$
$ \Rightarrow {\left| {\vec a \times \vec c} \right|^2} = 1 - \dfrac{1}{{16}}$
$ \Rightarrow {\left| {\vec a \times \vec c} \right|^2} = \dfrac{{16 - 1}}{{16}}$
$ \Rightarrow {\left| {\vec a \times \vec c} \right|^2} = \dfrac{{15}}{{16}}$
\[ \Rightarrow \left| {\vec a \times \vec c} \right| = \sqrt {\dfrac{{15}}{{16}}} \]
\[ \Rightarrow \left| {\vec a \times \vec c} \right| = \dfrac{{\sqrt {15} }}{4}\]
Hence, option (B) is the correct answer.
Note: The formula ${\left| {\vec a \cdot \vec c} \right|^2} + {\left| {\vec a \times \vec c} \right|^2} = 1$ can be derived as follows:
We know that, $\vec a \cdot \vec c = \left| {\vec a} \right|\left| {\vec c} \right|\cos \theta $
$ \Rightarrow {\left| {\vec a \cdot \vec c} \right|^2} = {\left| {\vec a} \right|^2}{\left| {\vec c} \right|^2}{\cos ^2}\theta $
We also know that, $\vec a \times \vec c = \left| {\vec a} \right|\left| {\vec c} \right|\sin \theta $
$ \Rightarrow {\left| {\vec a \times \vec c} \right|^2} = {\left| {\vec a} \right|^2}{\left| {\vec c} \right|^2}{\sin ^2}\theta $
Now, ${\left| {\vec a \cdot \vec c} \right|^2} + {\left| {\vec a \times \vec c} \right|^2} = {\left| {\vec a} \right|^2}{\left| {\vec c} \right|^2}{\cos ^2}\theta + {\left| {\vec a} \right|^2}{\left| {\vec c} \right|^2}{\sin ^2}\theta $
$ \Rightarrow {\left| {\vec a \cdot \vec c} \right|^2} + {\left| {\vec a \times \vec c} \right|^2} = {\left| {\vec a} \right|^2}{\left| {\vec c} \right|^2}\left( {{{\cos }^2}\theta + {{\sin }^2}\theta } \right)$
$ \Rightarrow {\left| {\vec a \cdot \vec c} \right|^2} + {\left| {\vec a \times \vec c} \right|^2} = {\left( 1 \right)^2}{\left( 1 \right)^2}\left( 1 \right)$
$\left( {\because {{\sin }^2}\theta + {{\cos }^2}\theta = 1} \right)$
$ \Rightarrow {\left| {\vec a \cdot \vec c} \right|^2} + {\left| {\vec a \times \vec c} \right|^2} = 1$
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

