Answer
Verified
454.8k+ views
Hint: Use the given root as a factor and divide by combining it
we need to use the quotient to calculate the third zero.
If $f(x)= x+a=0$ then $x=-a$ will be a zero of $f(x)$.
Complete step by step answer:
We know that if $x=a$ is the root or zero of any polynomial $f(x)$ then $x+a$ will completely divide the given polynomial and $x+a$ will be termed a factor of that polynomial \[f(x)\].
Here in question, it is given that $\sqrt{3}$ and \[-\sqrt{3}\]are the zeroes of the polynomial $f(x)={{x}^{3}}-4{{x}^{2}}-3x+12$
So according to the factor theorem \[x-\sqrt{3}\]and$x+\sqrt{3}$ will be the factor of the polynomial and product of these two will completely divide the given polynomial\[f(x)\].
$\left( x-\sqrt{3} \right)\left( x+\sqrt{3} \right)={{\left( x \right)}^{2}}-{{\left( \sqrt{3} \right)}^{2}}$.
Using,$\left( a+b \right)(a-b)={{a}^{2}}-{{b}^{2}}$
$={{x}^{2}}-3$
We now divide the polynomial ${{x}^{3}}-4{{x}^{2}}-3x+12$ by ${{x}^{2}}-3$
${{x}^{2}}-3\overset{x}{\overline{\left){\begin{align}
& {{x}^{3}}-4{{x}^{2}}-3x+12 \\
& {{x}^{3}}-3x
\end{align}}\right.}}$
Here first quotient is x since first term of polynomial is${{x}^{3}}$ ,
Now subtracting the term ,we get further division step
as$-4{{x}^{2}}+12$since ${{x}^{3}}$ get cancelled with ${{x}^{3}}$ and $-3x$ with $-3x$
So next quotient should be $-4$ to make same as $-4{{x}^{2}}+12$
${{x}^{2}}-3\overset{x-4}{\overline{\left){\begin{align}
& {{x}^{3}}-4{{x}^{2}}-3x+12 \\
& {{x}^{3}}-3x \\
&\hline\\
& -4{{x}^{2}}+12 \\
& -4{{x}^{2}}+12
\end{align}}\right.}}$
Further subtracting the last term we can clearly see that $-4{{x}^{2}}$ get cancelled with $-4{{x}^{2}}$and $12$ with $12$ so we get remainder as zero hence \[x-4\] will be the quotient as well as the factor of the given polynomial.
Therefore to calculate the third zero of the polynomial we need to put this quotient equals to zero.
$\begin{align}
& x-4=0 \\
& x=4
\end{align}$
Hence, third zero of the polynomial ${{x}^{3}}-4{{x}^{2}}-3x+12$ is 4.
Note:
- We can also use the sum of zeroes and product of zeroes method to find the third zero of the given polynomial.
- We also know it as the relation between zeroes and coefficients of polynomials.
we need to use the quotient to calculate the third zero.
If $f(x)= x+a=0$ then $x=-a$ will be a zero of $f(x)$.
Complete step by step answer:
We know that if $x=a$ is the root or zero of any polynomial $f(x)$ then $x+a$ will completely divide the given polynomial and $x+a$ will be termed a factor of that polynomial \[f(x)\].
Here in question, it is given that $\sqrt{3}$ and \[-\sqrt{3}\]are the zeroes of the polynomial $f(x)={{x}^{3}}-4{{x}^{2}}-3x+12$
So according to the factor theorem \[x-\sqrt{3}\]and$x+\sqrt{3}$ will be the factor of the polynomial and product of these two will completely divide the given polynomial\[f(x)\].
$\left( x-\sqrt{3} \right)\left( x+\sqrt{3} \right)={{\left( x \right)}^{2}}-{{\left( \sqrt{3} \right)}^{2}}$.
Using,$\left( a+b \right)(a-b)={{a}^{2}}-{{b}^{2}}$
$={{x}^{2}}-3$
We now divide the polynomial ${{x}^{3}}-4{{x}^{2}}-3x+12$ by ${{x}^{2}}-3$
${{x}^{2}}-3\overset{x}{\overline{\left){\begin{align}
& {{x}^{3}}-4{{x}^{2}}-3x+12 \\
& {{x}^{3}}-3x
\end{align}}\right.}}$
Here first quotient is x since first term of polynomial is${{x}^{3}}$ ,
Now subtracting the term ,we get further division step
as$-4{{x}^{2}}+12$since ${{x}^{3}}$ get cancelled with ${{x}^{3}}$ and $-3x$ with $-3x$
So next quotient should be $-4$ to make same as $-4{{x}^{2}}+12$
${{x}^{2}}-3\overset{x-4}{\overline{\left){\begin{align}
& {{x}^{3}}-4{{x}^{2}}-3x+12 \\
& {{x}^{3}}-3x \\
&\hline\\
& -4{{x}^{2}}+12 \\
& -4{{x}^{2}}+12
\end{align}}\right.}}$
Further subtracting the last term we can clearly see that $-4{{x}^{2}}$ get cancelled with $-4{{x}^{2}}$and $12$ with $12$ so we get remainder as zero hence \[x-4\] will be the quotient as well as the factor of the given polynomial.
Therefore to calculate the third zero of the polynomial we need to put this quotient equals to zero.
$\begin{align}
& x-4=0 \\
& x=4
\end{align}$
Hence, third zero of the polynomial ${{x}^{3}}-4{{x}^{2}}-3x+12$ is 4.
Note:
- We can also use the sum of zeroes and product of zeroes method to find the third zero of the given polynomial.
- We also know it as the relation between zeroes and coefficients of polynomials.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Discuss the main reasons for poverty in India
A Paragraph on Pollution in about 100-150 Words
Why is monsoon considered a unifying bond class 10 social science CBSE
What makes elections in India democratic class 11 social science CBSE
What does the term Genocidal War refer to class 12 social science CBSE
A weight hangs freely from the end of a spring A boy class 11 physics CBSE