If two pipes function simultaneously, a reservoir will be filled in 12 hours. One pipe fills the reservoir 10 hours faster than the other. How many hours will be taken by the second pipe to fill the reservoir.
Answer
Verified
507k+ views
Hint- Here, we will simply use the approach to finding the parts filled by each pipe.
Let the first pipe be pipe A and the second pipe be pipe B.
Given, Time taken to fill the reservoir when both pipes A and B function simultaneously$ = 12{\text{ hours}}$
$ \Rightarrow $Part of the reservoir filled by pipes A and B per hour when functioning simultaneously$ = \dfrac{1}{{12}}$
Also, given that pipe A fills the reservoir 10 hours faster than pipe B so if the time taken by pipe A alone to fill the reservoir is $x$ hours (say), then the time taken by pipe B alone to fill the reservoir will be $\left( {x - 10} \right)$ hours.
Time taken by pipe A alone to fill the reservoir$ = x$ hours
$ \Rightarrow $Part of the reservoir filled by pipe A alone per hour$ = \dfrac{1}{x}$
Time taken by pipe B alone to fill the reservoir$ = \left( {x - 10} \right)$ hours
$ \Rightarrow $Part of the reservoir filled by pipe B alone per hour$ = \dfrac{1}{{\left( {x - 10} \right)}}$
As we know that the part of the reservoir filled per hour when both the pipes are functioning will be equal to the sum of the parts of the reservoir filled per hour when pipe A is functioning alone and when pipe B is functioning alone.
\[
\dfrac{1}{{12}} = \dfrac{1}{x} + \dfrac{1}{{\left( {x - 10} \right)}} \Rightarrow \dfrac{1}{{12}} = \dfrac{{\left( {x - 10} \right) + x}}{{x\left( {x - 10} \right)}} \Rightarrow \dfrac{1}{{12}} = \dfrac{{2x - 10}}{{x\left( {x - 10} \right)}} \Rightarrow x\left( {x - 10} \right) = 12\left( {2x - 10} \right) \\
\Rightarrow {x^2} - 10x = 24x - 120 \Rightarrow {x^2} - 34x + 120 = 0 \Rightarrow {x^2} - 4x - 30x + 120 = 0 \Rightarrow x\left( {x - 4} \right) - 30\left( {x - 4} \right) = 0 \\
\Rightarrow \left( {x - 4} \right)\left( {x - 30} \right) = 0 \\
\]
Either $x = 4$ or $x = 30$
When $x = 4$ then $\left( {x - 10} \right) = 4 - 10 = - 6$ which is not possible because time is always positive. So, $x = 4$ is neglected.
When $x = 30$ then $\left( {x - 10} \right) = 30 - 10 = 20$.
Therefore, time taken by pipe A alone to fill the reservoir is 30 hours and the time taken by pipe B alone to fill the reservoir is 20 hours.
Hence, 20 hours are taken by the second pipe to fill the reservoir.
Note- In these types of problems, we simply take the reciprocal of the respective time taken by the pipes to find the part of the reservoir filled by each pipe. Then, we finally equal the part of the reservoir filled per hour by both pipes acting together with the sum of the parts of the reservoir filled per hour by each pipe when acting individually.
Let the first pipe be pipe A and the second pipe be pipe B.
Given, Time taken to fill the reservoir when both pipes A and B function simultaneously$ = 12{\text{ hours}}$
$ \Rightarrow $Part of the reservoir filled by pipes A and B per hour when functioning simultaneously$ = \dfrac{1}{{12}}$
Also, given that pipe A fills the reservoir 10 hours faster than pipe B so if the time taken by pipe A alone to fill the reservoir is $x$ hours (say), then the time taken by pipe B alone to fill the reservoir will be $\left( {x - 10} \right)$ hours.
Time taken by pipe A alone to fill the reservoir$ = x$ hours
$ \Rightarrow $Part of the reservoir filled by pipe A alone per hour$ = \dfrac{1}{x}$
Time taken by pipe B alone to fill the reservoir$ = \left( {x - 10} \right)$ hours
$ \Rightarrow $Part of the reservoir filled by pipe B alone per hour$ = \dfrac{1}{{\left( {x - 10} \right)}}$
As we know that the part of the reservoir filled per hour when both the pipes are functioning will be equal to the sum of the parts of the reservoir filled per hour when pipe A is functioning alone and when pipe B is functioning alone.
\[
\dfrac{1}{{12}} = \dfrac{1}{x} + \dfrac{1}{{\left( {x - 10} \right)}} \Rightarrow \dfrac{1}{{12}} = \dfrac{{\left( {x - 10} \right) + x}}{{x\left( {x - 10} \right)}} \Rightarrow \dfrac{1}{{12}} = \dfrac{{2x - 10}}{{x\left( {x - 10} \right)}} \Rightarrow x\left( {x - 10} \right) = 12\left( {2x - 10} \right) \\
\Rightarrow {x^2} - 10x = 24x - 120 \Rightarrow {x^2} - 34x + 120 = 0 \Rightarrow {x^2} - 4x - 30x + 120 = 0 \Rightarrow x\left( {x - 4} \right) - 30\left( {x - 4} \right) = 0 \\
\Rightarrow \left( {x - 4} \right)\left( {x - 30} \right) = 0 \\
\]
Either $x = 4$ or $x = 30$
When $x = 4$ then $\left( {x - 10} \right) = 4 - 10 = - 6$ which is not possible because time is always positive. So, $x = 4$ is neglected.
When $x = 30$ then $\left( {x - 10} \right) = 30 - 10 = 20$.
Therefore, time taken by pipe A alone to fill the reservoir is 30 hours and the time taken by pipe B alone to fill the reservoir is 20 hours.
Hence, 20 hours are taken by the second pipe to fill the reservoir.
Note- In these types of problems, we simply take the reciprocal of the respective time taken by the pipes to find the part of the reservoir filled by each pipe. Then, we finally equal the part of the reservoir filled per hour by both pipes acting together with the sum of the parts of the reservoir filled per hour by each pipe when acting individually.
Recently Updated Pages
Identify how many lines of symmetry drawn are there class 8 maths CBSE
State true or false If two lines intersect and if one class 8 maths CBSE
Tina had 20m 5cm long cloth She cuts 4m 50cm lengt-class-8-maths-CBSE
Which sentence is punctuated correctly A Always ask class 8 english CBSE
Will Mr Black be at home Saturday evening Yes hell class 8 english CBSE
An electrician sells a room heater for Rs 3220 gaining class 8 maths CBSE
Trending doubts
When people say No pun intended what does that mea class 8 english CBSE
Which king started the organization of the Kumbh fair class 8 social science CBSE
What is BLO What is the full form of BLO class 8 social science CBSE
Advantages and disadvantages of science
What are the 12 elements of nature class 8 chemistry CBSE
Write a letter to the Municipal Commissioner to inform class 8 english CBSE