
If two equations are ${x^2} + {y^2} - xy = 3$ and $y - x = 1$ then find $\dfrac{{xy}}{{{x^2} + {y^2}}}$.
Answer
612.6k+ views
Hint - Use the equation $y - x = 1$, square both sides of the equation and then use the other equation given to solve the question.
Complete step-by-step answer:
Given ${x^2} + {y^2} - xy = 3 \to (1)$ and $y - x = 1 \to (2)$
Now squaring both sides on the equation, $y - x = 1$
We get-
$
{(y - x)^2} = {1^2} \\
\Rightarrow {y^2} + {x^2} - 2xy = 1 \\
\Rightarrow {x^2} + {y^2} - 2xy = 1 - (3) \\
$
Subtracting equation (1) from equation (3)-
$
({x^2} + {y^2} - 2xy) - ({x^2} + {y^2} - xy) = 1 - 3 \\
\Rightarrow - 2xy + xy = - 2 \\
\Rightarrow - xy = - 2 \\
\Rightarrow xy = 2 \\
$
Now putting the value of xy in equation (1), we get-
$
{x^2} + {y^2} - 2 = 3 \\
{x^2} + {y^2} = 5 \\
$
Now putting the values of $xy = 2$ and ${x^2} + {y^2} = 5$ in $\dfrac{{xy}}{{{x^2} + {y^2}}}$ , we get-
$\dfrac{{xy}}{{{x^2} + {y^2}}} = \dfrac{2}{5}$
Therefore, the value of $\dfrac{{xy}}{{{x^2} + {y^2}}}$ is 2/5.
Note- Whenever such types of questions appear, then write down the equation given in the question. By squaring both sides on equation (2) and then subtracting equation (1) from the equation (3), we find the value of xy and then putting the value of xy we get ${x^2} + {y^2} = 5$ . And then substituting the values of $xy = 2$ and ${x^2} + {y^2} = 5$ to find the value of $\dfrac{{xy}}{{{x^2} + {y^2}}}$ .
Complete step-by-step answer:
Given ${x^2} + {y^2} - xy = 3 \to (1)$ and $y - x = 1 \to (2)$
Now squaring both sides on the equation, $y - x = 1$
We get-
$
{(y - x)^2} = {1^2} \\
\Rightarrow {y^2} + {x^2} - 2xy = 1 \\
\Rightarrow {x^2} + {y^2} - 2xy = 1 - (3) \\
$
Subtracting equation (1) from equation (3)-
$
({x^2} + {y^2} - 2xy) - ({x^2} + {y^2} - xy) = 1 - 3 \\
\Rightarrow - 2xy + xy = - 2 \\
\Rightarrow - xy = - 2 \\
\Rightarrow xy = 2 \\
$
Now putting the value of xy in equation (1), we get-
$
{x^2} + {y^2} - 2 = 3 \\
{x^2} + {y^2} = 5 \\
$
Now putting the values of $xy = 2$ and ${x^2} + {y^2} = 5$ in $\dfrac{{xy}}{{{x^2} + {y^2}}}$ , we get-
$\dfrac{{xy}}{{{x^2} + {y^2}}} = \dfrac{2}{5}$
Therefore, the value of $\dfrac{{xy}}{{{x^2} + {y^2}}}$ is 2/5.
Note- Whenever such types of questions appear, then write down the equation given in the question. By squaring both sides on equation (2) and then subtracting equation (1) from the equation (3), we find the value of xy and then putting the value of xy we get ${x^2} + {y^2} = 5$ . And then substituting the values of $xy = 2$ and ${x^2} + {y^2} = 5$ to find the value of $\dfrac{{xy}}{{{x^2} + {y^2}}}$ .
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Master Class 9 Social Science: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Master Class 9 Maths: Engaging Questions & Answers for Success

Master Class 9 Science: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Difference Between Plant Cell and Animal Cell

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Who is eligible for RTE class 9 social science CBSE

Which places in India experience sunrise first and class 9 social science CBSE

What is pollution? How many types of pollution? Define it

Name 10 Living and Non living things class 9 biology CBSE

