Answer
Verified
463.5k+ views
Hint: We will use various trigonometric identities to solve this question some of them are as states below,
\[\cot \theta =\dfrac{\cos \theta }{\sin \theta },\sin 2\theta =2\sin \theta \cos \theta ,\sin \left( A+B \right)=\sin A.\cos B+\cos A.\sin B\] and \[2\sin A.\sin B=\cos \left( A-B \right)-\cos \left( A+B \right)\]. Also we will use the fact that if 3 numbers a, b & c are in AP then, $2b = a + c.$
Complete step-by-step solution:
Given that \[\cot \left( \theta -\alpha \right),3\cot \theta ,\cot \left( \theta +\alpha \right)\] are in AP.
If three numbers are in AP, then; suppose a, b & c are the three numbers in AP then,
\[b=\dfrac{a+c}{2}\] or \[2b=a+c\] ------ (1)
Here, Let \[a=\cot \left( \theta -\alpha \right),b=3\cot \theta ,c=\cot \left( \theta +\alpha \right)\].
Substituting these values in equation (1), as they are in AP we get,
\[2\left[ 3\cot \theta \right]=\cot \left( \theta -\alpha \right)+\cot \left( \theta +\alpha \right)\]
Now because we have, \[\cot \theta =\dfrac{\cos \theta }{\sin \theta }\].
Converting \[\cot \theta \] in terms of \[\cos \theta \] & \[\sin \theta \] in above equation we get,
\[6\dfrac{\cos \theta }{\sin \theta }=\dfrac{\cos \left( \theta -\alpha \right)}{\sin \left( \theta -\alpha \right)}+\dfrac{\cos \left( \theta +\alpha \right)}{\sin \left( \theta +\alpha \right)}\]
Now taking LCM of denominator we get,
\[6\dfrac{\cos \theta }{\sin \theta }=\dfrac{\cos \left( \theta -\alpha \right)\sin \left( \theta +\alpha \right)+\cos \left( \theta +\alpha \right)\sin \left( \theta -\alpha \right)}{\sin \left( \theta -\alpha \right)\sin \left( \theta +\alpha \right)}\]
Now we have a trigonometric identity as,
\[\sin A.\cos B+\cos A.\sin B=\sin \left( A+B \right)\]
Let, \[A=\left( \theta -\alpha \right),B=\left( \theta +\alpha \right)\]
Using this trigonometric identity in above equation we get,
\[\begin{align}
& 6\dfrac{\cos \theta }{\sin \theta }=\dfrac{\sin \left( \theta +\alpha +\theta -\alpha \right)}{\sin \left( \theta -\alpha \right)\sin \left( \theta +\alpha \right)} \\
& \Rightarrow 6\dfrac{\cos \theta }{\sin \theta }=\dfrac{\sin \left( 2\theta \right)}{\sin \left( \theta +\alpha \right)\sin \left( \theta -\alpha \right)} \\
\end{align}\]
Using trigonometric identity, \[\sin 2\theta =2\sin \theta \cos \theta \] in above we get,
\[\Rightarrow 6\dfrac{\cos \theta }{\sin \theta }=\dfrac{2\sin \theta \cos \theta }{\sin \left( \theta +\alpha \right)\sin \left( \theta -\alpha \right)}\]
Cross multiplying both we have,
\[6\cos \theta \left[ \sin \left( \theta +\alpha \right)\sin \left( \theta -\alpha \right) \right]=2{{\sin }^{2}}\theta \cos \theta \]
Cancelling \[\cos \theta \] and 2 from both sides we get,
\[3\left[ \sin \left( \theta +\alpha \right)\sin \left( \theta -\alpha \right) \right]={{\sin }^{2}}\theta \]
Using trigonometric identity stated as,
\[2\sin A\sin B=\cos \left( A-B \right)-\cos \left( A+B \right)\] in above by taking, \[A=\theta +\alpha \] and \[B=\theta -\alpha \] we get,
\[\begin{align}
& \Rightarrow 3\left[ \cos \left( \theta +\alpha -\theta +\alpha \right)-\cos \left( \theta -\alpha +\theta +\alpha \right) \right]=2{{\sin }^{2}}\theta \\
& \Rightarrow 3\left( \cos 2\alpha -\cos 2\theta \right)=2{{\sin }^{2}}\theta \\
\end{align}\]
Now we will use trigonometric identity as stated,
\[\cos 2A=1-2{{\sin }^{2}}A\]
Using this above we get,
\[\begin{align}
& \Rightarrow 3\left[ 1-2{{\sin }^{2}}\alpha +2{{\sin }^{2}}\theta -1 \right]=2{{\sin }^{2}}\theta \\
& \Rightarrow -6{{\sin }^{2}}\alpha +6{{\sin }^{2}}\theta =2{{\sin }^{2}}\theta \\
\end{align}\]
\[\begin{align}
& \Rightarrow -6{{\sin }^{2}}\alpha =2{{\sin }^{2}}\theta -6{{\sin }^{2}}\theta \\
& \Rightarrow -6{{\sin }^{2}}\alpha =-4{{\sin }^{2}}\theta \\
\end{align}\]
Dividing by \[-{{\sin }^{2}}\alpha \] both sides we get,
\[\Rightarrow +6=+4\dfrac{{{\sin }^{2}}\theta }{{{\sin }^{2}}\alpha }\]
Dividing by 3 both sides we get,
\[\Rightarrow \dfrac{4{{\sin }^{2}}\theta }{3{{\sin }^{2}}\alpha }=2\]
So, answer is, \[\dfrac{4{{\sin }^{2}}\theta }{3{{\sin }^{2}}\alpha }=2\].
Note: Always remember that it is given that \[\theta \] is not an integral multiple of \[\dfrac{\pi }{2}\] therefore we can never use the formula of \[\sin \left( \theta +\dfrac{\pi }{2} \right)\] or \[\sin \left( \alpha +\dfrac{\pi }{2} \right)\] throughout the solution. Hence we have done all calculation without using these formulas.
\[\Rightarrow 3\left[ \sin \left( \theta +\alpha \right)\sin \left( \theta -\alpha \right) \right]={{\sin }^{2}}\theta \]
\[\cot \theta =\dfrac{\cos \theta }{\sin \theta },\sin 2\theta =2\sin \theta \cos \theta ,\sin \left( A+B \right)=\sin A.\cos B+\cos A.\sin B\] and \[2\sin A.\sin B=\cos \left( A-B \right)-\cos \left( A+B \right)\]. Also we will use the fact that if 3 numbers a, b & c are in AP then, $2b = a + c.$
Complete step-by-step solution:
Given that \[\cot \left( \theta -\alpha \right),3\cot \theta ,\cot \left( \theta +\alpha \right)\] are in AP.
If three numbers are in AP, then; suppose a, b & c are the three numbers in AP then,
\[b=\dfrac{a+c}{2}\] or \[2b=a+c\] ------ (1)
Here, Let \[a=\cot \left( \theta -\alpha \right),b=3\cot \theta ,c=\cot \left( \theta +\alpha \right)\].
Substituting these values in equation (1), as they are in AP we get,
\[2\left[ 3\cot \theta \right]=\cot \left( \theta -\alpha \right)+\cot \left( \theta +\alpha \right)\]
Now because we have, \[\cot \theta =\dfrac{\cos \theta }{\sin \theta }\].
Converting \[\cot \theta \] in terms of \[\cos \theta \] & \[\sin \theta \] in above equation we get,
\[6\dfrac{\cos \theta }{\sin \theta }=\dfrac{\cos \left( \theta -\alpha \right)}{\sin \left( \theta -\alpha \right)}+\dfrac{\cos \left( \theta +\alpha \right)}{\sin \left( \theta +\alpha \right)}\]
Now taking LCM of denominator we get,
\[6\dfrac{\cos \theta }{\sin \theta }=\dfrac{\cos \left( \theta -\alpha \right)\sin \left( \theta +\alpha \right)+\cos \left( \theta +\alpha \right)\sin \left( \theta -\alpha \right)}{\sin \left( \theta -\alpha \right)\sin \left( \theta +\alpha \right)}\]
Now we have a trigonometric identity as,
\[\sin A.\cos B+\cos A.\sin B=\sin \left( A+B \right)\]
Let, \[A=\left( \theta -\alpha \right),B=\left( \theta +\alpha \right)\]
Using this trigonometric identity in above equation we get,
\[\begin{align}
& 6\dfrac{\cos \theta }{\sin \theta }=\dfrac{\sin \left( \theta +\alpha +\theta -\alpha \right)}{\sin \left( \theta -\alpha \right)\sin \left( \theta +\alpha \right)} \\
& \Rightarrow 6\dfrac{\cos \theta }{\sin \theta }=\dfrac{\sin \left( 2\theta \right)}{\sin \left( \theta +\alpha \right)\sin \left( \theta -\alpha \right)} \\
\end{align}\]
Using trigonometric identity, \[\sin 2\theta =2\sin \theta \cos \theta \] in above we get,
\[\Rightarrow 6\dfrac{\cos \theta }{\sin \theta }=\dfrac{2\sin \theta \cos \theta }{\sin \left( \theta +\alpha \right)\sin \left( \theta -\alpha \right)}\]
Cross multiplying both we have,
\[6\cos \theta \left[ \sin \left( \theta +\alpha \right)\sin \left( \theta -\alpha \right) \right]=2{{\sin }^{2}}\theta \cos \theta \]
Cancelling \[\cos \theta \] and 2 from both sides we get,
\[3\left[ \sin \left( \theta +\alpha \right)\sin \left( \theta -\alpha \right) \right]={{\sin }^{2}}\theta \]
Using trigonometric identity stated as,
\[2\sin A\sin B=\cos \left( A-B \right)-\cos \left( A+B \right)\] in above by taking, \[A=\theta +\alpha \] and \[B=\theta -\alpha \] we get,
\[\begin{align}
& \Rightarrow 3\left[ \cos \left( \theta +\alpha -\theta +\alpha \right)-\cos \left( \theta -\alpha +\theta +\alpha \right) \right]=2{{\sin }^{2}}\theta \\
& \Rightarrow 3\left( \cos 2\alpha -\cos 2\theta \right)=2{{\sin }^{2}}\theta \\
\end{align}\]
Now we will use trigonometric identity as stated,
\[\cos 2A=1-2{{\sin }^{2}}A\]
Using this above we get,
\[\begin{align}
& \Rightarrow 3\left[ 1-2{{\sin }^{2}}\alpha +2{{\sin }^{2}}\theta -1 \right]=2{{\sin }^{2}}\theta \\
& \Rightarrow -6{{\sin }^{2}}\alpha +6{{\sin }^{2}}\theta =2{{\sin }^{2}}\theta \\
\end{align}\]
\[\begin{align}
& \Rightarrow -6{{\sin }^{2}}\alpha =2{{\sin }^{2}}\theta -6{{\sin }^{2}}\theta \\
& \Rightarrow -6{{\sin }^{2}}\alpha =-4{{\sin }^{2}}\theta \\
\end{align}\]
Dividing by \[-{{\sin }^{2}}\alpha \] both sides we get,
\[\Rightarrow +6=+4\dfrac{{{\sin }^{2}}\theta }{{{\sin }^{2}}\alpha }\]
Dividing by 3 both sides we get,
\[\Rightarrow \dfrac{4{{\sin }^{2}}\theta }{3{{\sin }^{2}}\alpha }=2\]
So, answer is, \[\dfrac{4{{\sin }^{2}}\theta }{3{{\sin }^{2}}\alpha }=2\].
Note: Always remember that it is given that \[\theta \] is not an integral multiple of \[\dfrac{\pi }{2}\] therefore we can never use the formula of \[\sin \left( \theta +\dfrac{\pi }{2} \right)\] or \[\sin \left( \alpha +\dfrac{\pi }{2} \right)\] throughout the solution. Hence we have done all calculation without using these formulas.
\[\Rightarrow 3\left[ \sin \left( \theta +\alpha \right)\sin \left( \theta -\alpha \right) \right]={{\sin }^{2}}\theta \]
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE