Answer

Verified

430.2k+ views

**Hint:**We will use various trigonometric identities to solve this question some of them are as states below,

\[\cot \theta =\dfrac{\cos \theta }{\sin \theta },\sin 2\theta =2\sin \theta \cos \theta ,\sin \left( A+B \right)=\sin A.\cos B+\cos A.\sin B\] and \[2\sin A.\sin B=\cos \left( A-B \right)-\cos \left( A+B \right)\]. Also we will use the fact that if 3 numbers a, b & c are in AP then, $2b = a + c.$

**Complete step-by-step solution:**Given that \[\cot \left( \theta -\alpha \right),3\cot \theta ,\cot \left( \theta +\alpha \right)\] are in AP.

If three numbers are in AP, then; suppose a, b & c are the three numbers in AP then,

\[b=\dfrac{a+c}{2}\] or \[2b=a+c\] ------ (1)

Here, Let \[a=\cot \left( \theta -\alpha \right),b=3\cot \theta ,c=\cot \left( \theta +\alpha \right)\].

Substituting these values in equation (1), as they are in AP we get,

\[2\left[ 3\cot \theta \right]=\cot \left( \theta -\alpha \right)+\cot \left( \theta +\alpha \right)\]

Now because we have, \[\cot \theta =\dfrac{\cos \theta }{\sin \theta }\].

Converting \[\cot \theta \] in terms of \[\cos \theta \] & \[\sin \theta \] in above equation we get,

\[6\dfrac{\cos \theta }{\sin \theta }=\dfrac{\cos \left( \theta -\alpha \right)}{\sin \left( \theta -\alpha \right)}+\dfrac{\cos \left( \theta +\alpha \right)}{\sin \left( \theta +\alpha \right)}\]

Now taking LCM of denominator we get,

\[6\dfrac{\cos \theta }{\sin \theta }=\dfrac{\cos \left( \theta -\alpha \right)\sin \left( \theta +\alpha \right)+\cos \left( \theta +\alpha \right)\sin \left( \theta -\alpha \right)}{\sin \left( \theta -\alpha \right)\sin \left( \theta +\alpha \right)}\]

Now we have a trigonometric identity as,

\[\sin A.\cos B+\cos A.\sin B=\sin \left( A+B \right)\]

Let, \[A=\left( \theta -\alpha \right),B=\left( \theta +\alpha \right)\]

Using this trigonometric identity in above equation we get,

\[\begin{align}

& 6\dfrac{\cos \theta }{\sin \theta }=\dfrac{\sin \left( \theta +\alpha +\theta -\alpha \right)}{\sin \left( \theta -\alpha \right)\sin \left( \theta +\alpha \right)} \\

& \Rightarrow 6\dfrac{\cos \theta }{\sin \theta }=\dfrac{\sin \left( 2\theta \right)}{\sin \left( \theta +\alpha \right)\sin \left( \theta -\alpha \right)} \\

\end{align}\]

Using trigonometric identity, \[\sin 2\theta =2\sin \theta \cos \theta \] in above we get,

\[\Rightarrow 6\dfrac{\cos \theta }{\sin \theta }=\dfrac{2\sin \theta \cos \theta }{\sin \left( \theta +\alpha \right)\sin \left( \theta -\alpha \right)}\]

Cross multiplying both we have,

\[6\cos \theta \left[ \sin \left( \theta +\alpha \right)\sin \left( \theta -\alpha \right) \right]=2{{\sin }^{2}}\theta \cos \theta \]

Cancelling \[\cos \theta \] and 2 from both sides we get,

\[3\left[ \sin \left( \theta +\alpha \right)\sin \left( \theta -\alpha \right) \right]={{\sin }^{2}}\theta \]

Using trigonometric identity stated as,

\[2\sin A\sin B=\cos \left( A-B \right)-\cos \left( A+B \right)\] in above by taking, \[A=\theta +\alpha \] and \[B=\theta -\alpha \] we get,

\[\begin{align}

& \Rightarrow 3\left[ \cos \left( \theta +\alpha -\theta +\alpha \right)-\cos \left( \theta -\alpha +\theta +\alpha \right) \right]=2{{\sin }^{2}}\theta \\

& \Rightarrow 3\left( \cos 2\alpha -\cos 2\theta \right)=2{{\sin }^{2}}\theta \\

\end{align}\]

Now we will use trigonometric identity as stated,

\[\cos 2A=1-2{{\sin }^{2}}A\]

Using this above we get,

\[\begin{align}

& \Rightarrow 3\left[ 1-2{{\sin }^{2}}\alpha +2{{\sin }^{2}}\theta -1 \right]=2{{\sin }^{2}}\theta \\

& \Rightarrow -6{{\sin }^{2}}\alpha +6{{\sin }^{2}}\theta =2{{\sin }^{2}}\theta \\

\end{align}\]

\[\begin{align}

& \Rightarrow -6{{\sin }^{2}}\alpha =2{{\sin }^{2}}\theta -6{{\sin }^{2}}\theta \\

& \Rightarrow -6{{\sin }^{2}}\alpha =-4{{\sin }^{2}}\theta \\

\end{align}\]

Dividing by \[-{{\sin }^{2}}\alpha \] both sides we get,

\[\Rightarrow +6=+4\dfrac{{{\sin }^{2}}\theta }{{{\sin }^{2}}\alpha }\]

Dividing by 3 both sides we get,

\[\Rightarrow \dfrac{4{{\sin }^{2}}\theta }{3{{\sin }^{2}}\alpha }=2\]

**So, answer is, \[\dfrac{4{{\sin }^{2}}\theta }{3{{\sin }^{2}}\alpha }=2\].**

**Note:**Always remember that it is given that \[\theta \] is not an integral multiple of \[\dfrac{\pi }{2}\] therefore we can never use the formula of \[\sin \left( \theta +\dfrac{\pi }{2} \right)\] or \[\sin \left( \alpha +\dfrac{\pi }{2} \right)\] throughout the solution. Hence we have done all calculation without using these formulas.

\[\Rightarrow 3\left[ \sin \left( \theta +\alpha \right)\sin \left( \theta -\alpha \right) \right]={{\sin }^{2}}\theta \]

Recently Updated Pages

When people say No pun intended what does that mea class 8 english CBSE

Name the states which share their boundary with Indias class 9 social science CBSE

Give an account of the Northern Plains of India class 9 social science CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Advantages and disadvantages of science

A Paragraph on Pollution in about 100-150 Words

Trending doubts

Which are the Top 10 Largest Countries of the World?

One cusec is equal to how many liters class 8 maths CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Give 10 examples for herbs , shrubs , climbers , creepers

Write a letter to the principal requesting him to grant class 10 english CBSE

What organs are located on the left side of your body class 11 biology CBSE