
If trigonometric ratios \[\cot \left( \theta -\alpha \right),3\cot \theta ,\cot \left( \theta +\alpha \right)\] are in AP and \[\theta \] is not an integral multiple of \[\dfrac{\pi }{2}\], then find the value of \[\dfrac{4{{\sin }^{2}}\theta }{3{{\sin }^{2}}\alpha }\].
Answer
579.3k+ views
Hint: We will use various trigonometric identities to solve this question some of them are as states below,
\[\cot \theta =\dfrac{\cos \theta }{\sin \theta },\sin 2\theta =2\sin \theta \cos \theta ,\sin \left( A+B \right)=\sin A.\cos B+\cos A.\sin B\] and \[2\sin A.\sin B=\cos \left( A-B \right)-\cos \left( A+B \right)\]. Also we will use the fact that if 3 numbers a, b & c are in AP then, $2b = a + c.$
Complete step-by-step solution:
Given that \[\cot \left( \theta -\alpha \right),3\cot \theta ,\cot \left( \theta +\alpha \right)\] are in AP.
If three numbers are in AP, then; suppose a, b & c are the three numbers in AP then,
\[b=\dfrac{a+c}{2}\] or \[2b=a+c\] ------ (1)
Here, Let \[a=\cot \left( \theta -\alpha \right),b=3\cot \theta ,c=\cot \left( \theta +\alpha \right)\].
Substituting these values in equation (1), as they are in AP we get,
\[2\left[ 3\cot \theta \right]=\cot \left( \theta -\alpha \right)+\cot \left( \theta +\alpha \right)\]
Now because we have, \[\cot \theta =\dfrac{\cos \theta }{\sin \theta }\].
Converting \[\cot \theta \] in terms of \[\cos \theta \] & \[\sin \theta \] in above equation we get,
\[6\dfrac{\cos \theta }{\sin \theta }=\dfrac{\cos \left( \theta -\alpha \right)}{\sin \left( \theta -\alpha \right)}+\dfrac{\cos \left( \theta +\alpha \right)}{\sin \left( \theta +\alpha \right)}\]
Now taking LCM of denominator we get,
\[6\dfrac{\cos \theta }{\sin \theta }=\dfrac{\cos \left( \theta -\alpha \right)\sin \left( \theta +\alpha \right)+\cos \left( \theta +\alpha \right)\sin \left( \theta -\alpha \right)}{\sin \left( \theta -\alpha \right)\sin \left( \theta +\alpha \right)}\]
Now we have a trigonometric identity as,
\[\sin A.\cos B+\cos A.\sin B=\sin \left( A+B \right)\]
Let, \[A=\left( \theta -\alpha \right),B=\left( \theta +\alpha \right)\]
Using this trigonometric identity in above equation we get,
\[\begin{align}
& 6\dfrac{\cos \theta }{\sin \theta }=\dfrac{\sin \left( \theta +\alpha +\theta -\alpha \right)}{\sin \left( \theta -\alpha \right)\sin \left( \theta +\alpha \right)} \\
& \Rightarrow 6\dfrac{\cos \theta }{\sin \theta }=\dfrac{\sin \left( 2\theta \right)}{\sin \left( \theta +\alpha \right)\sin \left( \theta -\alpha \right)} \\
\end{align}\]
Using trigonometric identity, \[\sin 2\theta =2\sin \theta \cos \theta \] in above we get,
\[\Rightarrow 6\dfrac{\cos \theta }{\sin \theta }=\dfrac{2\sin \theta \cos \theta }{\sin \left( \theta +\alpha \right)\sin \left( \theta -\alpha \right)}\]
Cross multiplying both we have,
\[6\cos \theta \left[ \sin \left( \theta +\alpha \right)\sin \left( \theta -\alpha \right) \right]=2{{\sin }^{2}}\theta \cos \theta \]
Cancelling \[\cos \theta \] and 2 from both sides we get,
\[3\left[ \sin \left( \theta +\alpha \right)\sin \left( \theta -\alpha \right) \right]={{\sin }^{2}}\theta \]
Using trigonometric identity stated as,
\[2\sin A\sin B=\cos \left( A-B \right)-\cos \left( A+B \right)\] in above by taking, \[A=\theta +\alpha \] and \[B=\theta -\alpha \] we get,
\[\begin{align}
& \Rightarrow 3\left[ \cos \left( \theta +\alpha -\theta +\alpha \right)-\cos \left( \theta -\alpha +\theta +\alpha \right) \right]=2{{\sin }^{2}}\theta \\
& \Rightarrow 3\left( \cos 2\alpha -\cos 2\theta \right)=2{{\sin }^{2}}\theta \\
\end{align}\]
Now we will use trigonometric identity as stated,
\[\cos 2A=1-2{{\sin }^{2}}A\]
Using this above we get,
\[\begin{align}
& \Rightarrow 3\left[ 1-2{{\sin }^{2}}\alpha +2{{\sin }^{2}}\theta -1 \right]=2{{\sin }^{2}}\theta \\
& \Rightarrow -6{{\sin }^{2}}\alpha +6{{\sin }^{2}}\theta =2{{\sin }^{2}}\theta \\
\end{align}\]
\[\begin{align}
& \Rightarrow -6{{\sin }^{2}}\alpha =2{{\sin }^{2}}\theta -6{{\sin }^{2}}\theta \\
& \Rightarrow -6{{\sin }^{2}}\alpha =-4{{\sin }^{2}}\theta \\
\end{align}\]
Dividing by \[-{{\sin }^{2}}\alpha \] both sides we get,
\[\Rightarrow +6=+4\dfrac{{{\sin }^{2}}\theta }{{{\sin }^{2}}\alpha }\]
Dividing by 3 both sides we get,
\[\Rightarrow \dfrac{4{{\sin }^{2}}\theta }{3{{\sin }^{2}}\alpha }=2\]
So, answer is, \[\dfrac{4{{\sin }^{2}}\theta }{3{{\sin }^{2}}\alpha }=2\].
Note: Always remember that it is given that \[\theta \] is not an integral multiple of \[\dfrac{\pi }{2}\] therefore we can never use the formula of \[\sin \left( \theta +\dfrac{\pi }{2} \right)\] or \[\sin \left( \alpha +\dfrac{\pi }{2} \right)\] throughout the solution. Hence we have done all calculation without using these formulas.
\[\Rightarrow 3\left[ \sin \left( \theta +\alpha \right)\sin \left( \theta -\alpha \right) \right]={{\sin }^{2}}\theta \]
\[\cot \theta =\dfrac{\cos \theta }{\sin \theta },\sin 2\theta =2\sin \theta \cos \theta ,\sin \left( A+B \right)=\sin A.\cos B+\cos A.\sin B\] and \[2\sin A.\sin B=\cos \left( A-B \right)-\cos \left( A+B \right)\]. Also we will use the fact that if 3 numbers a, b & c are in AP then, $2b = a + c.$
Complete step-by-step solution:
Given that \[\cot \left( \theta -\alpha \right),3\cot \theta ,\cot \left( \theta +\alpha \right)\] are in AP.
If three numbers are in AP, then; suppose a, b & c are the three numbers in AP then,
\[b=\dfrac{a+c}{2}\] or \[2b=a+c\] ------ (1)
Here, Let \[a=\cot \left( \theta -\alpha \right),b=3\cot \theta ,c=\cot \left( \theta +\alpha \right)\].
Substituting these values in equation (1), as they are in AP we get,
\[2\left[ 3\cot \theta \right]=\cot \left( \theta -\alpha \right)+\cot \left( \theta +\alpha \right)\]
Now because we have, \[\cot \theta =\dfrac{\cos \theta }{\sin \theta }\].
Converting \[\cot \theta \] in terms of \[\cos \theta \] & \[\sin \theta \] in above equation we get,
\[6\dfrac{\cos \theta }{\sin \theta }=\dfrac{\cos \left( \theta -\alpha \right)}{\sin \left( \theta -\alpha \right)}+\dfrac{\cos \left( \theta +\alpha \right)}{\sin \left( \theta +\alpha \right)}\]
Now taking LCM of denominator we get,
\[6\dfrac{\cos \theta }{\sin \theta }=\dfrac{\cos \left( \theta -\alpha \right)\sin \left( \theta +\alpha \right)+\cos \left( \theta +\alpha \right)\sin \left( \theta -\alpha \right)}{\sin \left( \theta -\alpha \right)\sin \left( \theta +\alpha \right)}\]
Now we have a trigonometric identity as,
\[\sin A.\cos B+\cos A.\sin B=\sin \left( A+B \right)\]
Let, \[A=\left( \theta -\alpha \right),B=\left( \theta +\alpha \right)\]
Using this trigonometric identity in above equation we get,
\[\begin{align}
& 6\dfrac{\cos \theta }{\sin \theta }=\dfrac{\sin \left( \theta +\alpha +\theta -\alpha \right)}{\sin \left( \theta -\alpha \right)\sin \left( \theta +\alpha \right)} \\
& \Rightarrow 6\dfrac{\cos \theta }{\sin \theta }=\dfrac{\sin \left( 2\theta \right)}{\sin \left( \theta +\alpha \right)\sin \left( \theta -\alpha \right)} \\
\end{align}\]
Using trigonometric identity, \[\sin 2\theta =2\sin \theta \cos \theta \] in above we get,
\[\Rightarrow 6\dfrac{\cos \theta }{\sin \theta }=\dfrac{2\sin \theta \cos \theta }{\sin \left( \theta +\alpha \right)\sin \left( \theta -\alpha \right)}\]
Cross multiplying both we have,
\[6\cos \theta \left[ \sin \left( \theta +\alpha \right)\sin \left( \theta -\alpha \right) \right]=2{{\sin }^{2}}\theta \cos \theta \]
Cancelling \[\cos \theta \] and 2 from both sides we get,
\[3\left[ \sin \left( \theta +\alpha \right)\sin \left( \theta -\alpha \right) \right]={{\sin }^{2}}\theta \]
Using trigonometric identity stated as,
\[2\sin A\sin B=\cos \left( A-B \right)-\cos \left( A+B \right)\] in above by taking, \[A=\theta +\alpha \] and \[B=\theta -\alpha \] we get,
\[\begin{align}
& \Rightarrow 3\left[ \cos \left( \theta +\alpha -\theta +\alpha \right)-\cos \left( \theta -\alpha +\theta +\alpha \right) \right]=2{{\sin }^{2}}\theta \\
& \Rightarrow 3\left( \cos 2\alpha -\cos 2\theta \right)=2{{\sin }^{2}}\theta \\
\end{align}\]
Now we will use trigonometric identity as stated,
\[\cos 2A=1-2{{\sin }^{2}}A\]
Using this above we get,
\[\begin{align}
& \Rightarrow 3\left[ 1-2{{\sin }^{2}}\alpha +2{{\sin }^{2}}\theta -1 \right]=2{{\sin }^{2}}\theta \\
& \Rightarrow -6{{\sin }^{2}}\alpha +6{{\sin }^{2}}\theta =2{{\sin }^{2}}\theta \\
\end{align}\]
\[\begin{align}
& \Rightarrow -6{{\sin }^{2}}\alpha =2{{\sin }^{2}}\theta -6{{\sin }^{2}}\theta \\
& \Rightarrow -6{{\sin }^{2}}\alpha =-4{{\sin }^{2}}\theta \\
\end{align}\]
Dividing by \[-{{\sin }^{2}}\alpha \] both sides we get,
\[\Rightarrow +6=+4\dfrac{{{\sin }^{2}}\theta }{{{\sin }^{2}}\alpha }\]
Dividing by 3 both sides we get,
\[\Rightarrow \dfrac{4{{\sin }^{2}}\theta }{3{{\sin }^{2}}\alpha }=2\]
So, answer is, \[\dfrac{4{{\sin }^{2}}\theta }{3{{\sin }^{2}}\alpha }=2\].
Note: Always remember that it is given that \[\theta \] is not an integral multiple of \[\dfrac{\pi }{2}\] therefore we can never use the formula of \[\sin \left( \theta +\dfrac{\pi }{2} \right)\] or \[\sin \left( \alpha +\dfrac{\pi }{2} \right)\] throughout the solution. Hence we have done all calculation without using these formulas.
\[\Rightarrow 3\left[ \sin \left( \theta +\alpha \right)\sin \left( \theta -\alpha \right) \right]={{\sin }^{2}}\theta \]
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

What is periodicity class 11 chemistry CBSE

Explain zero factorial class 11 maths CBSE

What is a periderm How does periderm formation take class 11 biology CBSE

Mention the basic forces in nature class 11 physics CBSE

