
If trigonometric equation is given as $\sec A\tan B + \tan A\sec B = 91$ , then the value of ${\left( {\sec A\sec B + \tan A\tan B} \right)^2}$ is equal to
Answer
617.4k+ views
Hint-In this question, we have to use the trigonometric identities. We can see in question all terms in sec and tan so we can use the most common identity ${\sec ^2}\theta = 1 + {\tan ^2}\theta $ but sometimes we can use as ${\sec ^2}\theta - {\tan ^2}\theta = 1$.
Complete step-by-step solution -
Given, $\sec A\tan B + \tan A\sec B = 91$
Now, squaring both sides
\[ \Rightarrow {\left( {\sec A\tan B + \tan A\sec B} \right)^2} = {\left( {91} \right)^2}\]
Use algebraic identity, ${\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab$
\[
\Rightarrow {\left( {\sec A\tan B} \right)^2} + {\left( {\tan A\sec B} \right)^2} + 2 \times \sec A\tan B \times \tan A\sec B = {\left( {91} \right)^2} \\
\Rightarrow 2 \times \sec A\tan B \times \tan A\sec B = 8281 - {\sec ^2}A{\tan ^2}B - {\tan ^2}A{\sec ^2}B...............\left( 1 \right) \\
\]
Now, we have to find the value of ${\left( {\sec A\sec B + \tan A\tan B} \right)^2}$ so we open the square by using algebraic identity, ${\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab$ .
$
\Rightarrow {\left( {\sec A\sec B + \tan A\tan B} \right)^2} = {\left( {\sec A\sec B} \right)^2} + {\left( {\tan A\tan B} \right)^2} + 2 \times \sec A\sec B \times \tan A\tan B \\
\Rightarrow {\left( {\sec A\sec B + \tan A\tan B} \right)^2} = {\sec ^2}A{\sec ^2}B + {\tan ^2}A{\tan ^2}B + 2 \times \sec A\sec B \times \tan A\tan B \\
$
Now, put the value of $2 \times \sec A\sec B \times \tan A\tan B$ From (1) equation.
$
\Rightarrow {\left( {\sec A\sec B + \tan A\tan B} \right)^2} = {\sec ^2}A{\sec ^2}B + {\tan ^2}A{\tan ^2}B + 8281 - {\sec ^2}A{\tan ^2}B - {\tan ^2}A{\sec ^2}B \\
\Rightarrow {\left( {\sec A\sec B + \tan A\tan B} \right)^2} = 8281 + {\sec ^2}A\left( {{{\sec }^2}B - {{\tan }^2}B} \right) - {\tan ^2}A\left( {{{\sec }^2}B - {{\tan }^2}B} \right) \\
$
We know, ${\sec ^2}\theta - {\tan ^2}\theta = 1$
$ \Rightarrow {\left( {\sec A\sec B + \tan A\tan B} \right)^2} = 8281 + \left( {{{\sec }^2}A - {{\tan }^2}A} \right)$
Again use, ${\sec ^2}\theta - {\tan ^2}\theta = 1$
$
\Rightarrow {\left( {\sec A\sec B + \tan A\tan B} \right)^2} = 8281 + 1 \\
\Rightarrow {\left( {\sec A\sec B + \tan A\tan B} \right)^2} = 8282 \\
$
So, the value of ${\left( {\sec A\sec B + \tan A\tan B} \right)^2}$ is 8282.
Note-In such types of problems we have to express (evaluate) the required term and also the given mention in the question by using the trigonometric identities and then solve both the equations. So after calculation we will get the required answer.
Complete step-by-step solution -
Given, $\sec A\tan B + \tan A\sec B = 91$
Now, squaring both sides
\[ \Rightarrow {\left( {\sec A\tan B + \tan A\sec B} \right)^2} = {\left( {91} \right)^2}\]
Use algebraic identity, ${\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab$
\[
\Rightarrow {\left( {\sec A\tan B} \right)^2} + {\left( {\tan A\sec B} \right)^2} + 2 \times \sec A\tan B \times \tan A\sec B = {\left( {91} \right)^2} \\
\Rightarrow 2 \times \sec A\tan B \times \tan A\sec B = 8281 - {\sec ^2}A{\tan ^2}B - {\tan ^2}A{\sec ^2}B...............\left( 1 \right) \\
\]
Now, we have to find the value of ${\left( {\sec A\sec B + \tan A\tan B} \right)^2}$ so we open the square by using algebraic identity, ${\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab$ .
$
\Rightarrow {\left( {\sec A\sec B + \tan A\tan B} \right)^2} = {\left( {\sec A\sec B} \right)^2} + {\left( {\tan A\tan B} \right)^2} + 2 \times \sec A\sec B \times \tan A\tan B \\
\Rightarrow {\left( {\sec A\sec B + \tan A\tan B} \right)^2} = {\sec ^2}A{\sec ^2}B + {\tan ^2}A{\tan ^2}B + 2 \times \sec A\sec B \times \tan A\tan B \\
$
Now, put the value of $2 \times \sec A\sec B \times \tan A\tan B$ From (1) equation.
$
\Rightarrow {\left( {\sec A\sec B + \tan A\tan B} \right)^2} = {\sec ^2}A{\sec ^2}B + {\tan ^2}A{\tan ^2}B + 8281 - {\sec ^2}A{\tan ^2}B - {\tan ^2}A{\sec ^2}B \\
\Rightarrow {\left( {\sec A\sec B + \tan A\tan B} \right)^2} = 8281 + {\sec ^2}A\left( {{{\sec }^2}B - {{\tan }^2}B} \right) - {\tan ^2}A\left( {{{\sec }^2}B - {{\tan }^2}B} \right) \\
$
We know, ${\sec ^2}\theta - {\tan ^2}\theta = 1$
$ \Rightarrow {\left( {\sec A\sec B + \tan A\tan B} \right)^2} = 8281 + \left( {{{\sec }^2}A - {{\tan }^2}A} \right)$
Again use, ${\sec ^2}\theta - {\tan ^2}\theta = 1$
$
\Rightarrow {\left( {\sec A\sec B + \tan A\tan B} \right)^2} = 8281 + 1 \\
\Rightarrow {\left( {\sec A\sec B + \tan A\tan B} \right)^2} = 8282 \\
$
So, the value of ${\left( {\sec A\sec B + \tan A\tan B} \right)^2}$ is 8282.
Note-In such types of problems we have to express (evaluate) the required term and also the given mention in the question by using the trigonometric identities and then solve both the equations. So after calculation we will get the required answer.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

