
If trigonometric equation is given as $\cos x+\cos y=a,\cos 2x+\cos 2y=b,\cos 3x+\cos 3y=c,$ then:
(A). ${{\cos }^{2}}x+{{\cos }^{2}}y=1+\dfrac{b}{2}$
(B). \[\cos x\cos y=\dfrac{{{a}^{2}}}{2}-\left( \dfrac{b+2}{4} \right)\]
(C). $2{{a}^{3}}+c=3a\left( 1+b \right)$
(D). $a+b+c=3abc$
Answer
610.8k+ views
Hint: First take 2nd equation. put $\cos 2x=2{{\cos }^{2}}x-1$ and simplify it. From this get the value for $\cos x\cos y$ .Now take the 3rd equation. Put $\cos 3x=4{{\cos }^{3}}x-3\cos x$ and simplify. Apply these basic identities and simplify until the terms are only a, b and c.
Complete step-by-step solution -
We have been given three trigonometric equations which are,
$\cos x+\cos y=a$ …………….(1)
$\cos 2x+\cos 2y=b$ ………..(2)
$\cos 3x+\cos 3y=c$ ………….(3)
Let us first take equation (2)
$\cos 2x+\cos 2y=b$ .
We know that $\cos 2x=2{{\cos }^{2}}x-1$ , which is a basic trigonometric identity. Thus substitute this in equation (2)
$2{{\cos }^{2}}x-1+2{{\cos }^{2}}y-1=b$ , let us simplify this.
$\begin{align}
& 2\left( {{\cos }^{2}}x+{{\cos }^{2}}y \right)-2=b \\
& 2\left( {{\cos }^{2}}x+{{\cos }^{2}}y \right)=b+2 \\
& {{\cos }^{2}}x+{{\cos }^{2}}y=\dfrac{b+2}{2}=1+\dfrac{b}{2} \\
\end{align}$
i.e. ${{\cos }^{2}}x+{{\cos }^{2}}y=1+\dfrac{b}{2}$ …………………… (4)
We know that ${{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}$ .
Thus we can write ${{a}^{2}}+{{b}^{2}}={{\left( a+b \right)}^{2}}-2ab$ . Simplify for ${{\cos }^{2}}x+{{\cos }^{2}}y$we can write,
Where $a=\cos x$ and $b=\cos y$ ,
$\begin{align}
& \therefore {{\cos }^{2}}x+{{\cos }^{2}}y=\left( \cos x+\cos y \right)-2\cos x\cos y \\
& \therefore {{\left( \cos x+\cos y \right)}^{2}}-2\cos x\cos y=1+\dfrac{b}{2} \\
\end{align}$
From (1) we know that $\cos x+\cos y=a$ . thus substitute this in the above expression.
$\therefore {{a}^{2}}-2\cos x\cos y=1+\dfrac{b}{2}$ .
Thus, ${{a}^{2}}-\left( \dfrac{b+2}{2} \right)=2\cos x\cos y$
$\therefore \cos x\cos y=\dfrac{{{a}^{2}}}{2}-\left( \dfrac{b+2}{4} \right)$ ………….(5)
Now, we have also been given $\cos 3x+\cos 3y=c$ .We know the formula. $\cos 3x=4{{\cos }^{3}}x-3\cos $ . substitute this in (2) we get,
\[\begin{align}
& 4{{\cos }^{3}}x-3\cos x+4{{\cos }^{3}}y-3\cos y=c \\
& 4\left[ {{\cos }^{3}}x+{{\cos }^{3}}y \right]-3\left[ \cos x+\cos y \right]=c \\
\end{align}\]
We know that ${{x}^{3}}+{{y}^{3}}=\left( x+y \right)\left( {{x}^{2}}-xy+{{y}^{2}} \right)$ .
Similarly for ${{\cos }^{3}}x+{{\cos }^{3}}y=\left( \cos x+\cos y \right)\left[ {{\cos }^{2}}x-\cos x\cos y+{{\cos }^{2}}y \right]$
Let us substitute this in the place of ${{\cos }^{3}}x+{{\cos }^{3}}y$ in the above expression.
Hence we get,
$4\left[ \left( \cos x+\cos y \right)\left( {{\cos }^{2}}x-\cos x\cos y+{{\cos }^{2}}y \right) \right]-3\left( \cos x+\cos y \right)=c$
Now put $\cos x+\cos y=a$ .
${{\cos }^{2}}x+{{\cos }^{2}}y=\dfrac{b+a}{2}$ and \[\cos x\cos y=\dfrac{{{a}^{2}}}{\alpha }-\left( \dfrac{b+2}{4} \right)\]
Thus we get,
$4\left[ \left( a \right)\left[ \left( \dfrac{b+2}{2} \right)-\dfrac{{{a}^{2}}}{\alpha }+\left( \dfrac{b+2}{4} \right) \right] \right]-3a=c$
Let us simplify the above expression.
$\begin{align}
& 4a\left[ \left( \dfrac{b+2}{2} \right)+\left( \dfrac{b+2}{4} \right)-\dfrac{{{a}^{2}}}{\alpha } \right]-3a=c \\
& 4a\left[ \dfrac{2b+4+b+2}{4}-\dfrac{{{a}^{2}}}{\alpha } \right]-3a=c \\
& 4a\left[ \left( \dfrac{3b+6}{4} \right)-\dfrac{{{a}^{2}}}{\alpha } \right]-3a=c \\
& \Rightarrow 3\times 4a\left( \dfrac{b+2}{4} \right)-4a\times \dfrac{{{a}^{2}}}{\alpha }-3a=c \\
& \Rightarrow 3ab+6a-2{{a}^{3}}-3a=c \\
& \Rightarrow 3ab+3a-2{{a}^{3}}=c \\
& \therefore 3a\left( b+1 \right)=2{{a}^{3}}+c \\
\end{align}$
Thus we got the required simplification,
$3a\left( b+1 \right)=2{{a}^{3}}+c$
Thus we got, $\begin{align}
& {{\cos }^{2}}x+{{\cos }^{2}}y=1+\dfrac{b}{2} \\
& \cos x\cos y=\dfrac{{{a}^{2}}}{\alpha }-\left( \dfrac{b+2}{4} \right) \\
\end{align}$
And $2{{a}^{3}}+c=3a\left( 1+b \right)$ .
$\therefore $ Option (a) , (b) and (C) are the correct answers.
Note: We have used a lot of trigonometric identities and basic formulas. Thus, it is important that you learn the formulas, so solving problems like these will be easier for you. Just apply the formula and simplify it, you will get the required answer.
Complete step-by-step solution -
We have been given three trigonometric equations which are,
$\cos x+\cos y=a$ …………….(1)
$\cos 2x+\cos 2y=b$ ………..(2)
$\cos 3x+\cos 3y=c$ ………….(3)
Let us first take equation (2)
$\cos 2x+\cos 2y=b$ .
We know that $\cos 2x=2{{\cos }^{2}}x-1$ , which is a basic trigonometric identity. Thus substitute this in equation (2)
$2{{\cos }^{2}}x-1+2{{\cos }^{2}}y-1=b$ , let us simplify this.
$\begin{align}
& 2\left( {{\cos }^{2}}x+{{\cos }^{2}}y \right)-2=b \\
& 2\left( {{\cos }^{2}}x+{{\cos }^{2}}y \right)=b+2 \\
& {{\cos }^{2}}x+{{\cos }^{2}}y=\dfrac{b+2}{2}=1+\dfrac{b}{2} \\
\end{align}$
i.e. ${{\cos }^{2}}x+{{\cos }^{2}}y=1+\dfrac{b}{2}$ …………………… (4)
We know that ${{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}$ .
Thus we can write ${{a}^{2}}+{{b}^{2}}={{\left( a+b \right)}^{2}}-2ab$ . Simplify for ${{\cos }^{2}}x+{{\cos }^{2}}y$we can write,
Where $a=\cos x$ and $b=\cos y$ ,
$\begin{align}
& \therefore {{\cos }^{2}}x+{{\cos }^{2}}y=\left( \cos x+\cos y \right)-2\cos x\cos y \\
& \therefore {{\left( \cos x+\cos y \right)}^{2}}-2\cos x\cos y=1+\dfrac{b}{2} \\
\end{align}$
From (1) we know that $\cos x+\cos y=a$ . thus substitute this in the above expression.
$\therefore {{a}^{2}}-2\cos x\cos y=1+\dfrac{b}{2}$ .
Thus, ${{a}^{2}}-\left( \dfrac{b+2}{2} \right)=2\cos x\cos y$
$\therefore \cos x\cos y=\dfrac{{{a}^{2}}}{2}-\left( \dfrac{b+2}{4} \right)$ ………….(5)
Now, we have also been given $\cos 3x+\cos 3y=c$ .We know the formula. $\cos 3x=4{{\cos }^{3}}x-3\cos $ . substitute this in (2) we get,
\[\begin{align}
& 4{{\cos }^{3}}x-3\cos x+4{{\cos }^{3}}y-3\cos y=c \\
& 4\left[ {{\cos }^{3}}x+{{\cos }^{3}}y \right]-3\left[ \cos x+\cos y \right]=c \\
\end{align}\]
We know that ${{x}^{3}}+{{y}^{3}}=\left( x+y \right)\left( {{x}^{2}}-xy+{{y}^{2}} \right)$ .
Similarly for ${{\cos }^{3}}x+{{\cos }^{3}}y=\left( \cos x+\cos y \right)\left[ {{\cos }^{2}}x-\cos x\cos y+{{\cos }^{2}}y \right]$
Let us substitute this in the place of ${{\cos }^{3}}x+{{\cos }^{3}}y$ in the above expression.
Hence we get,
$4\left[ \left( \cos x+\cos y \right)\left( {{\cos }^{2}}x-\cos x\cos y+{{\cos }^{2}}y \right) \right]-3\left( \cos x+\cos y \right)=c$
Now put $\cos x+\cos y=a$ .
${{\cos }^{2}}x+{{\cos }^{2}}y=\dfrac{b+a}{2}$ and \[\cos x\cos y=\dfrac{{{a}^{2}}}{\alpha }-\left( \dfrac{b+2}{4} \right)\]
Thus we get,
$4\left[ \left( a \right)\left[ \left( \dfrac{b+2}{2} \right)-\dfrac{{{a}^{2}}}{\alpha }+\left( \dfrac{b+2}{4} \right) \right] \right]-3a=c$
Let us simplify the above expression.
$\begin{align}
& 4a\left[ \left( \dfrac{b+2}{2} \right)+\left( \dfrac{b+2}{4} \right)-\dfrac{{{a}^{2}}}{\alpha } \right]-3a=c \\
& 4a\left[ \dfrac{2b+4+b+2}{4}-\dfrac{{{a}^{2}}}{\alpha } \right]-3a=c \\
& 4a\left[ \left( \dfrac{3b+6}{4} \right)-\dfrac{{{a}^{2}}}{\alpha } \right]-3a=c \\
& \Rightarrow 3\times 4a\left( \dfrac{b+2}{4} \right)-4a\times \dfrac{{{a}^{2}}}{\alpha }-3a=c \\
& \Rightarrow 3ab+6a-2{{a}^{3}}-3a=c \\
& \Rightarrow 3ab+3a-2{{a}^{3}}=c \\
& \therefore 3a\left( b+1 \right)=2{{a}^{3}}+c \\
\end{align}$
Thus we got the required simplification,
$3a\left( b+1 \right)=2{{a}^{3}}+c$
Thus we got, $\begin{align}
& {{\cos }^{2}}x+{{\cos }^{2}}y=1+\dfrac{b}{2} \\
& \cos x\cos y=\dfrac{{{a}^{2}}}{\alpha }-\left( \dfrac{b+2}{4} \right) \\
\end{align}$
And $2{{a}^{3}}+c=3a\left( 1+b \right)$ .
$\therefore $ Option (a) , (b) and (C) are the correct answers.
Note: We have used a lot of trigonometric identities and basic formulas. Thus, it is important that you learn the formulas, so solving problems like these will be easier for you. Just apply the formula and simplify it, you will get the required answer.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

