
If ${{\text{t}}_{\text{n}}}{\text{ = }}\sum\limits_{{\text{r = 0}}}^{\text{n}} {\dfrac{1}{{{{({}^{\text{n}}{{\text{C}}_{\text{r}}})}^{\text{k}}}}}} $ and ${{\text{S}}_{\text{n}}}{\text{ = }}\sum\limits_{{\text{r = 0}}}^{\text{n}} {\dfrac{{\text{r}}}{{{{({}^{\text{n}}{{\text{C}}_{\text{r}}})}^{\text{k}}}}}} $, where ${\text{k}} \in {{\text{Z}}^ + }$, then ${\cos ^{ - 1}}\left( {\dfrac{{{{\text{S}}_{\text{n}}}}}{{{\text{n}}{{\text{t}}_{\text{n}}}}}} \right)$
A. $\dfrac{\pi }{6}$
B. $\dfrac{\pi }{4}$
C. $\dfrac{\pi }{3}$
D. $\dfrac{\pi }{2}$
Answer
588.9k+ views
- Hint: To solve this problem, we will use the property ${}^{\text{n}}{{\text{C}}_{\text{r}}}{\text{ = }}{}^{\text{n}}{{\text{C}}_{{\text{n - r}}}}$. We will simplify \[{{\text{t}}_{\text{n}}}\] and \[{{\text{S}}_{\text{n}}}\] by using this property and also find a relation between them. Then we will use the trigonometric value of the inverse function ${\text{co}}{{\text{s}}^{ - 1}}{\text{x}}$ to find the value of ${\cos ^{ - 1}}\left( {\dfrac{{{{\text{S}}_{\text{n}}}}}{{{\text{n}}{{\text{t}}_{\text{n}}}}}} \right)$.
Complete step-by-step solution -
Now, we are given
${{\text{t}}_{\text{n}}}{\text{ = }}\sum\limits_{{\text{r = 0}}}^{\text{n}} {\dfrac{1}{{{{({}^{\text{n}}{{\text{C}}_{\text{r}}})}^{\text{k}}}}}} $ and ${{\text{S}}_{\text{n}}}{\text{ = }}\sum\limits_{{\text{r = 0}}}^{\text{n}} {\dfrac{{\text{r}}}{{{{({}^{\text{n}}{{\text{C}}_{\text{r}}})}^{\text{k}}}}}} $
Now, r can be written as r = n – (n – r), Therefore, ${{\text{S}}_{\text{n}}}$ can be written as
${{\text{S}}_{\text{n}}}{\text{ = }}\sum\limits_{{\text{r = 0}}}^{\text{n}} {\dfrac{{{\text{n - (n - r)}}}}{{{{({}^{\text{n}}{{\text{C}}_{\text{r}}})}^{\text{k}}}}}} $
${{\text{S}}_{\text{n}}}{\text{ = }}\sum\limits_{{\text{r = 0}}}^{\text{n}} {\dfrac{{{\text{n }}}}{{{{({}^{\text{n}}{{\text{C}}_{\text{r}}})}^{\text{k}}}}}} {\text{ - }}\sum\limits_{{\text{r = 0}}}^{\text{n}} {\dfrac{{{\text{n - r}}}}{{{{({}^{\text{n}}{{\text{C}}_{\text{r}}})}^{\text{k}}}}}} $
${{\text{S}}_{\text{n}}}{\text{ = n}}\sum\limits_{{\text{r = 0}}}^{\text{n}} {\dfrac{{{\text{1 }}}}{{{{({}^{\text{n}}{{\text{C}}_{\text{r}}})}^{\text{k}}}}}} {\text{ - }}\sum\limits_{{\text{r = 0}}}^{\text{n}} {\dfrac{{{\text{n - r}}}}{{{{({}^{\text{n}}{{\text{C}}_{\text{r}}})}^{\text{k}}}}}} $
Therefore, ${{\text{S}}_{\text{n}}}{\text{ = n}}{{\text{t}}_{\text{n}}}{\text{ - }}\sum\limits_{{\text{r = 0}}}^{\text{n}} {\dfrac{{{\text{n - r}}}}{{{{({}^{\text{n}}{{\text{C}}_{\text{r}}})}^{\text{k}}}}}} $ … (1)
Now, let ${{\text{b}}_{\text{n}}}{\text{ = }}\sum\limits_{{\text{r = 0}}}^{\text{n}} {\dfrac{{{\text{n - r}}}}{{{{({}^{\text{n}}{{\text{C}}_{\text{r}}})}^{\text{k}}}}}} $
From the property ${}^{\text{n}}{{\text{C}}_{\text{r}}}{\text{ = }}{}^{\text{n}}{{\text{C}}_{{\text{n - r}}}}$, we get
${{\text{b}}_{\text{n}}}{\text{ = }}\sum\limits_{{\text{r = 0}}}^{\text{n}} {\dfrac{{{\text{n - r}}}}{{{{({}^{\text{n}}{{\text{C}}_{{\text{n - r}}}})}^{\text{k}}}}}} $
Expanding ${{\text{b}}_{\text{n}}}$, we get
${{\text{b}}_{\text{n}}}{\text{ = }}\dfrac{{\text{n}}}{{{{({}^{\text{n}}{{\text{C}}_{\text{n}}})}^{\text{k}}}}}{\text{ + }}\dfrac{{{\text{n - 1}}}}{{{{({}^{\text{n}}{{\text{C}}_{{\text{n - 1}}}})}^{\text{k}}}}}{\text{ + }}\dfrac{{{\text{n - 2}}}}{{{{({}^{\text{n}}{{\text{C}}_{{\text{n - }}2}})}^{\text{k}}}}}{\text{ + }}........{\text{ + }}\dfrac{{\text{1}}}{{{{({}^{\text{n}}{{\text{C}}_1})}^{\text{k}}}}}{\text{ + }}\dfrac{0}{{{{({}^{\text{n}}{{\text{C}}_0})}^{\text{k}}}}}$
Also, ${{\text{S}}_{\text{n}}}{\text{ = }}\sum\limits_{{\text{r = 0}}}^{\text{n}} {\dfrac{{\text{r}}}{{{{({}^{\text{n}}{{\text{C}}_{\text{r}}})}^{\text{k}}}}}} $.So, expanding ${{\text{S}}_{\text{n}}}$, we get
${{\text{S}}_{\text{n}}}{\text{ = }}\dfrac{0}{{{{({}^{\text{n}}{{\text{C}}_0})}^{\text{k}}}}}{\text{ + }}\dfrac{1}{{{{({}^{\text{n}}{{\text{C}}_1})}^{\text{k}}}}}{\text{ + }}\dfrac{2}{{{{({}^{\text{n}}{{\text{C}}_2})}^{\text{k}}}}}{\text{ + }}........{\text{ + }}\dfrac{{{\text{n - 1}}}}{{{{({}^{\text{n}}{{\text{C}}_{{\text{n - 1}}}})}^{\text{k}}}}}{\text{ + }}\dfrac{{\text{n}}}{{{{({}^{\text{n}}{{\text{C}}_{\text{n}}})}^{\text{k}}}}}$
Now, we can see that both the expansion of ${{\text{b}}_{\text{n}}}$ and ${{\text{S}}_{\text{n}}}$ are equal. Therefore, we get
${{\text{S}}_{\text{n}}}$ = ${{\text{b}}_{\text{n}}}$. So, from equation (1), we get
${{\text{S}}_{\text{n}}}{\text{ = n}}{{\text{t}}_{\text{n}}}{\text{ - }}{{\text{S}}_{\text{n}}}$
${\text{2}}{{\text{S}}_{\text{n}}}{\text{ = n}}{{\text{t}}_{\text{n}}}$
Now, ${\cos ^{ - 1}}\left( {\dfrac{{{{\text{S}}_{\text{n}}}}}{{{\text{n}}{{\text{t}}_{\text{n}}}}}} \right)$ = ${\cos ^{ - 1}}\left( {\dfrac{{{{\text{S}}_{\text{n}}}}}{{{\text{2}}{{\text{S}}_{\text{n}}}}}} \right)$ = ${\cos ^{ - 1}}\left( {\dfrac{1}{{\text{2}}}} \right)$. Now ${\cos ^{ - 1}}\left( {\dfrac{1}{{\text{2}}}} \right)$ = $\dfrac{\pi }{3}$
Therefore, ${\cos ^{ - 1}}\left( {\dfrac{{{{\text{S}}_{\text{n}}}}}{{{\text{n}}{{\text{t}}_{\text{n}}}}}} \right)$ = $\dfrac{\pi }{3}$
So, option (C) is correct.
Note: When we come up with such types of questions, we have to first simplify the given terms. Then, we have to find a relation between given terms as the question can be solved easily with the help of the relation. We have to use the property ${}^{\text{n}}{{\text{C}}_{\text{r}}}{\text{ = }}{}^{\text{n}}{{\text{C}}_{{\text{n - r}}}}$ because it plays the most important role in finding the relation and solving the given problem.
Complete step-by-step solution -
Now, we are given
${{\text{t}}_{\text{n}}}{\text{ = }}\sum\limits_{{\text{r = 0}}}^{\text{n}} {\dfrac{1}{{{{({}^{\text{n}}{{\text{C}}_{\text{r}}})}^{\text{k}}}}}} $ and ${{\text{S}}_{\text{n}}}{\text{ = }}\sum\limits_{{\text{r = 0}}}^{\text{n}} {\dfrac{{\text{r}}}{{{{({}^{\text{n}}{{\text{C}}_{\text{r}}})}^{\text{k}}}}}} $
Now, r can be written as r = n – (n – r), Therefore, ${{\text{S}}_{\text{n}}}$ can be written as
${{\text{S}}_{\text{n}}}{\text{ = }}\sum\limits_{{\text{r = 0}}}^{\text{n}} {\dfrac{{{\text{n - (n - r)}}}}{{{{({}^{\text{n}}{{\text{C}}_{\text{r}}})}^{\text{k}}}}}} $
${{\text{S}}_{\text{n}}}{\text{ = }}\sum\limits_{{\text{r = 0}}}^{\text{n}} {\dfrac{{{\text{n }}}}{{{{({}^{\text{n}}{{\text{C}}_{\text{r}}})}^{\text{k}}}}}} {\text{ - }}\sum\limits_{{\text{r = 0}}}^{\text{n}} {\dfrac{{{\text{n - r}}}}{{{{({}^{\text{n}}{{\text{C}}_{\text{r}}})}^{\text{k}}}}}} $
${{\text{S}}_{\text{n}}}{\text{ = n}}\sum\limits_{{\text{r = 0}}}^{\text{n}} {\dfrac{{{\text{1 }}}}{{{{({}^{\text{n}}{{\text{C}}_{\text{r}}})}^{\text{k}}}}}} {\text{ - }}\sum\limits_{{\text{r = 0}}}^{\text{n}} {\dfrac{{{\text{n - r}}}}{{{{({}^{\text{n}}{{\text{C}}_{\text{r}}})}^{\text{k}}}}}} $
Therefore, ${{\text{S}}_{\text{n}}}{\text{ = n}}{{\text{t}}_{\text{n}}}{\text{ - }}\sum\limits_{{\text{r = 0}}}^{\text{n}} {\dfrac{{{\text{n - r}}}}{{{{({}^{\text{n}}{{\text{C}}_{\text{r}}})}^{\text{k}}}}}} $ … (1)
Now, let ${{\text{b}}_{\text{n}}}{\text{ = }}\sum\limits_{{\text{r = 0}}}^{\text{n}} {\dfrac{{{\text{n - r}}}}{{{{({}^{\text{n}}{{\text{C}}_{\text{r}}})}^{\text{k}}}}}} $
From the property ${}^{\text{n}}{{\text{C}}_{\text{r}}}{\text{ = }}{}^{\text{n}}{{\text{C}}_{{\text{n - r}}}}$, we get
${{\text{b}}_{\text{n}}}{\text{ = }}\sum\limits_{{\text{r = 0}}}^{\text{n}} {\dfrac{{{\text{n - r}}}}{{{{({}^{\text{n}}{{\text{C}}_{{\text{n - r}}}})}^{\text{k}}}}}} $
Expanding ${{\text{b}}_{\text{n}}}$, we get
${{\text{b}}_{\text{n}}}{\text{ = }}\dfrac{{\text{n}}}{{{{({}^{\text{n}}{{\text{C}}_{\text{n}}})}^{\text{k}}}}}{\text{ + }}\dfrac{{{\text{n - 1}}}}{{{{({}^{\text{n}}{{\text{C}}_{{\text{n - 1}}}})}^{\text{k}}}}}{\text{ + }}\dfrac{{{\text{n - 2}}}}{{{{({}^{\text{n}}{{\text{C}}_{{\text{n - }}2}})}^{\text{k}}}}}{\text{ + }}........{\text{ + }}\dfrac{{\text{1}}}{{{{({}^{\text{n}}{{\text{C}}_1})}^{\text{k}}}}}{\text{ + }}\dfrac{0}{{{{({}^{\text{n}}{{\text{C}}_0})}^{\text{k}}}}}$
Also, ${{\text{S}}_{\text{n}}}{\text{ = }}\sum\limits_{{\text{r = 0}}}^{\text{n}} {\dfrac{{\text{r}}}{{{{({}^{\text{n}}{{\text{C}}_{\text{r}}})}^{\text{k}}}}}} $.So, expanding ${{\text{S}}_{\text{n}}}$, we get
${{\text{S}}_{\text{n}}}{\text{ = }}\dfrac{0}{{{{({}^{\text{n}}{{\text{C}}_0})}^{\text{k}}}}}{\text{ + }}\dfrac{1}{{{{({}^{\text{n}}{{\text{C}}_1})}^{\text{k}}}}}{\text{ + }}\dfrac{2}{{{{({}^{\text{n}}{{\text{C}}_2})}^{\text{k}}}}}{\text{ + }}........{\text{ + }}\dfrac{{{\text{n - 1}}}}{{{{({}^{\text{n}}{{\text{C}}_{{\text{n - 1}}}})}^{\text{k}}}}}{\text{ + }}\dfrac{{\text{n}}}{{{{({}^{\text{n}}{{\text{C}}_{\text{n}}})}^{\text{k}}}}}$
Now, we can see that both the expansion of ${{\text{b}}_{\text{n}}}$ and ${{\text{S}}_{\text{n}}}$ are equal. Therefore, we get
${{\text{S}}_{\text{n}}}$ = ${{\text{b}}_{\text{n}}}$. So, from equation (1), we get
${{\text{S}}_{\text{n}}}{\text{ = n}}{{\text{t}}_{\text{n}}}{\text{ - }}{{\text{S}}_{\text{n}}}$
${\text{2}}{{\text{S}}_{\text{n}}}{\text{ = n}}{{\text{t}}_{\text{n}}}$
Now, ${\cos ^{ - 1}}\left( {\dfrac{{{{\text{S}}_{\text{n}}}}}{{{\text{n}}{{\text{t}}_{\text{n}}}}}} \right)$ = ${\cos ^{ - 1}}\left( {\dfrac{{{{\text{S}}_{\text{n}}}}}{{{\text{2}}{{\text{S}}_{\text{n}}}}}} \right)$ = ${\cos ^{ - 1}}\left( {\dfrac{1}{{\text{2}}}} \right)$. Now ${\cos ^{ - 1}}\left( {\dfrac{1}{{\text{2}}}} \right)$ = $\dfrac{\pi }{3}$
Therefore, ${\cos ^{ - 1}}\left( {\dfrac{{{{\text{S}}_{\text{n}}}}}{{{\text{n}}{{\text{t}}_{\text{n}}}}}} \right)$ = $\dfrac{\pi }{3}$
So, option (C) is correct.
Note: When we come up with such types of questions, we have to first simplify the given terms. Then, we have to find a relation between given terms as the question can be solved easily with the help of the relation. We have to use the property ${}^{\text{n}}{{\text{C}}_{\text{r}}}{\text{ = }}{}^{\text{n}}{{\text{C}}_{{\text{n - r}}}}$ because it plays the most important role in finding the relation and solving the given problem.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Which is the Longest Railway Platform in the world?

India Manned Space Mission Launch Target Month and Year 2025 Update

Which of the following pairs is correct?

The Turko-Afghan rule in India lasted for about?

Who wrote the novel "Pride and Prejudice"?

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which type of resource is iron ore A Renewable B Biotic class 11 social science CBSE

10 examples of friction in our daily life

Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

