
If $\theta $ lies in the first quadrant and $\cos \theta =\dfrac{8}{17}$, the prove that: $\cos \left( \dfrac{\pi }{6}+\theta \right)+\cos \left( \dfrac{\pi }{4}-\theta \right)+\cos \left( \dfrac{2\pi }{3}-\theta \right)=\left( \dfrac{\sqrt{3}-1}{2}+\dfrac{1}{\sqrt{2}} \right)\dfrac{23}{17}$
Answer
610.5k+ views
Hint: We will be using the concept of trigonometric identities to solve the problem. We will be using the trigonometric identity that $\cos \left( x+y \right)=\cos x\cos y-\sin x\sin y$. Then we will be using $\cos \theta =\dfrac{8}{17}$ to find the value of $\sin \theta $.
Complete step-by-step answer:
Now, we have been given that $\theta $ lies in the first quadrant and $\cos \theta =\dfrac{8}{17}$.
Now, we will take LHS and prove it to be equal to RHS. Now, in LHS we have,
$\cos \left( \dfrac{\pi }{6}+\theta \right)+\cos \left( \dfrac{\pi }{4}-\theta \right)+\cos \left( \dfrac{2\pi }{3}-\theta \right)$
Now, we will use the trigonometric identity that,
$\begin{align}
& \cos \left( A+B \right)=\cos A\cos B-\sin A\sin B \\
& \cos \left( A-B \right)=\cos A\cos B+\sin A\sin B \\
\end{align}$
So, we have,
$\cos \left( \dfrac{\pi }{6} \right)\cos \theta -\sin \left( \dfrac{\pi }{6} \right)\sin \theta +\cos \left( \dfrac{\pi }{4} \right)\cos \theta +\sin \left( \dfrac{\pi }{4} \right)\sin \theta +\cos \left( \dfrac{2\pi }{3} \right)\cos \theta +\sin \left( \dfrac{2\pi }{3} \right)\sin \theta $
Now, we know that the value of,
\[\begin{align}
& \cos \left( \dfrac{\pi }{6} \right)=\dfrac{\sqrt{3}}{2} \\
& \sin \left( \dfrac{\pi }{6} \right)=\dfrac{1}{2} \\
& \cos \left( \dfrac{\pi }{4} \right)=\dfrac{1}{\sqrt{2}} \\
& \sin \left( \dfrac{\pi }{4} \right)=\dfrac{1}{\sqrt{2}} \\
& \cos \left( \dfrac{2\pi }{3} \right)=\dfrac{-1}{2} \\
& \sin \left( \dfrac{2\pi }{3} \right)=\dfrac{\sqrt{3}}{2} \\
\end{align}\]
So, using this we have,
\[=\dfrac{\sqrt{3}}{2}\cos \theta -\dfrac{1}{2}\sin \theta +\dfrac{1}{\sqrt{2}}\cos \theta +\dfrac{1}{\sqrt{2}}\sin \theta -\dfrac{1}{2}\cos \theta +\dfrac{\sqrt{3}}{2}\sin \theta \]
Now, we will collect the sine terms and cosine terms together. So, we have,
\[=\cos \theta \left( \dfrac{\sqrt{3}}{2}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{2} \right)+\sin \theta \left( \dfrac{\sqrt{3}}{2}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{2} \right)\]
Now, we will take the terms \[\left( \dfrac{\sqrt{3}-1}{2}+\dfrac{1}{\sqrt{2}} \right)\] common. So, we have,
\[\left( \dfrac{\sqrt{3}-1}{2}+\dfrac{1}{\sqrt{2}} \right)\left( \cos \theta +\sin \theta \right)\]
Now, we know that $\cos \theta =\dfrac{8}{17}$. So, we will use the trigonometric identity that ${{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1$ to find the value of $\sin \theta $. So, we have,
$\begin{align}
& {{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1 \\
& {{\sin }^{2}}\theta =1-{{\cos }^{2}}\theta \\
& \sin \theta =\pm \sqrt{1-{{\cos }^{2}}\theta } \\
\end{align}$
Now, we will use the value of $\cos \theta =\dfrac{8}{17}$ to find the value of $\sin \theta $.
$\begin{align}
& \sin \theta =\pm \sqrt{1-\dfrac{64}{289}} \\
& =\pm \sqrt{\dfrac{289-64}{289}} \\
& =\pm \sqrt{\dfrac{225}{289}} \\
& \sin \theta =\pm \dfrac{15}{17} \\
\end{align}$
Now, we have $\theta $ lies in the first quadrant. Therefore, $\sin \theta $ will be positive, so
we reject the value $\sin \theta =-\dfrac{15}{17}$.
Now, using $\sin \theta =\dfrac{15}{17}$ we have,
\[\begin{align}
& \left( \dfrac{\sqrt{3}-1}{2}+\dfrac{1}{\sqrt{2}} \right)\left( \dfrac{15}{17}+\dfrac{8}{17} \right) \\
& \left( \dfrac{\sqrt{3}-1}{2}+\dfrac{1}{\sqrt{2}} \right)\left( \dfrac{23}{17} \right) \\
\end{align}\]
Since, LHS = RHS.
Hence, proved.
Note: To solve these type of questions it is important to note that we have used the value of $\cos \theta =\dfrac{8}{17}$ and the formula ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$ to find the value of $\cos \theta $. Also, we have used trigonometric formulae like,
$\begin{align}
& \cos \left( A+B \right)=\cos A\cos B-\sin A\sin B \\
& \cos \left( A-B \right)=\cos A\cos B+\sin A\sin B \\
\end{align}$
Complete step-by-step answer:
Now, we have been given that $\theta $ lies in the first quadrant and $\cos \theta =\dfrac{8}{17}$.
Now, we will take LHS and prove it to be equal to RHS. Now, in LHS we have,
$\cos \left( \dfrac{\pi }{6}+\theta \right)+\cos \left( \dfrac{\pi }{4}-\theta \right)+\cos \left( \dfrac{2\pi }{3}-\theta \right)$
Now, we will use the trigonometric identity that,
$\begin{align}
& \cos \left( A+B \right)=\cos A\cos B-\sin A\sin B \\
& \cos \left( A-B \right)=\cos A\cos B+\sin A\sin B \\
\end{align}$
So, we have,
$\cos \left( \dfrac{\pi }{6} \right)\cos \theta -\sin \left( \dfrac{\pi }{6} \right)\sin \theta +\cos \left( \dfrac{\pi }{4} \right)\cos \theta +\sin \left( \dfrac{\pi }{4} \right)\sin \theta +\cos \left( \dfrac{2\pi }{3} \right)\cos \theta +\sin \left( \dfrac{2\pi }{3} \right)\sin \theta $
Now, we know that the value of,
\[\begin{align}
& \cos \left( \dfrac{\pi }{6} \right)=\dfrac{\sqrt{3}}{2} \\
& \sin \left( \dfrac{\pi }{6} \right)=\dfrac{1}{2} \\
& \cos \left( \dfrac{\pi }{4} \right)=\dfrac{1}{\sqrt{2}} \\
& \sin \left( \dfrac{\pi }{4} \right)=\dfrac{1}{\sqrt{2}} \\
& \cos \left( \dfrac{2\pi }{3} \right)=\dfrac{-1}{2} \\
& \sin \left( \dfrac{2\pi }{3} \right)=\dfrac{\sqrt{3}}{2} \\
\end{align}\]
So, using this we have,
\[=\dfrac{\sqrt{3}}{2}\cos \theta -\dfrac{1}{2}\sin \theta +\dfrac{1}{\sqrt{2}}\cos \theta +\dfrac{1}{\sqrt{2}}\sin \theta -\dfrac{1}{2}\cos \theta +\dfrac{\sqrt{3}}{2}\sin \theta \]
Now, we will collect the sine terms and cosine terms together. So, we have,
\[=\cos \theta \left( \dfrac{\sqrt{3}}{2}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{2} \right)+\sin \theta \left( \dfrac{\sqrt{3}}{2}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{2} \right)\]
Now, we will take the terms \[\left( \dfrac{\sqrt{3}-1}{2}+\dfrac{1}{\sqrt{2}} \right)\] common. So, we have,
\[\left( \dfrac{\sqrt{3}-1}{2}+\dfrac{1}{\sqrt{2}} \right)\left( \cos \theta +\sin \theta \right)\]
Now, we know that $\cos \theta =\dfrac{8}{17}$. So, we will use the trigonometric identity that ${{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1$ to find the value of $\sin \theta $. So, we have,
$\begin{align}
& {{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1 \\
& {{\sin }^{2}}\theta =1-{{\cos }^{2}}\theta \\
& \sin \theta =\pm \sqrt{1-{{\cos }^{2}}\theta } \\
\end{align}$
Now, we will use the value of $\cos \theta =\dfrac{8}{17}$ to find the value of $\sin \theta $.
$\begin{align}
& \sin \theta =\pm \sqrt{1-\dfrac{64}{289}} \\
& =\pm \sqrt{\dfrac{289-64}{289}} \\
& =\pm \sqrt{\dfrac{225}{289}} \\
& \sin \theta =\pm \dfrac{15}{17} \\
\end{align}$
Now, we have $\theta $ lies in the first quadrant. Therefore, $\sin \theta $ will be positive, so
we reject the value $\sin \theta =-\dfrac{15}{17}$.
Now, using $\sin \theta =\dfrac{15}{17}$ we have,
\[\begin{align}
& \left( \dfrac{\sqrt{3}-1}{2}+\dfrac{1}{\sqrt{2}} \right)\left( \dfrac{15}{17}+\dfrac{8}{17} \right) \\
& \left( \dfrac{\sqrt{3}-1}{2}+\dfrac{1}{\sqrt{2}} \right)\left( \dfrac{23}{17} \right) \\
\end{align}\]
Since, LHS = RHS.
Hence, proved.
Note: To solve these type of questions it is important to note that we have used the value of $\cos \theta =\dfrac{8}{17}$ and the formula ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$ to find the value of $\cos \theta $. Also, we have used trigonometric formulae like,
$\begin{align}
& \cos \left( A+B \right)=\cos A\cos B-\sin A\sin B \\
& \cos \left( A-B \right)=\cos A\cos B+\sin A\sin B \\
\end{align}$
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

