
If $\theta = \dfrac{\pi }{{12}}$ , then the value of ${\tan ^4}\theta - 14{\tan ^2}\theta $
A. -1
B. 0
C. 1
D. 3
Answer
579.9k+ views
Hint: If the value corresponding to the particular value of angle is not known, then the angle should be broken down into 2 such angles whose values are already known. Then the difference or sum of angle formula should be used. The value of $\tan \left( {x - y} \right) = \dfrac{{\tan x - \tan y}}{{1 + \tan x.\tan y}}$ and $\tan \left( {x + y} \right) =\dfrac{{\tan x + \tan y}}{{1 - \tan x.\tan y}}$. Where x and y are those angles, whose values are known for the tangent function.
Complete step by step solution:$\dfrac{\pi }{{12}} = \dfrac{\pi }{3} - \dfrac{\pi }{4}$ ,
Where, [ $\dfrac{\pi }{{12}} = \dfrac{\pi }{{12}} \times \dfrac{{{{180}^o}}}{\pi } = {15^o}$ , $\dfrac{\pi }{3} = \dfrac{\pi }{3} \times \dfrac{{{{180}^o}}}{\pi } = {60^o}$ and $\dfrac{\pi }{4} = \dfrac{\pi }{4} \times \dfrac{{{{180}^o}}}{\pi } = {45^o}$]
To convert angle given into degree from radian multiply by$\dfrac{{{{180}^o}}}{\pi }$ .
Now we know the tangent difference identity formula as.
$\tan \left( {x - y} \right) = \dfrac{{\tan x - \tan y}}{{1 + \tan x.\tan y}}......(1)$
Here, $x = \frac{\pi }{3}$ and $y = \frac{\pi }{4}$
Substitute the value in equation (1),
\[\tan \left( {\dfrac{\pi }{3} - \dfrac{\pi }{4}} \right) = \dfrac{{\tan \left( {\dfrac{\pi }{3}} \right) - \tan \left( {\dfrac{\pi }{4}} \right)}}{{1 + \tan \left( {\dfrac{\pi }{3}} \right)\tan \left( {\dfrac{\pi }{4}} \right)}}......(2)\]
The value of $\tan \left( {\dfrac{\pi }{3}} \right) = \sqrt 3 $ and $\tan \left( {\dfrac{\pi }{4}} \right) = 1$ , substitute it in equation (2)
$ \tan \left( {\dfrac{\pi }{{12}}} \right) = \dfrac{{\sqrt 3 - 1}}{{1 + \left( {\sqrt 3 } \right)\left( 1 \right)}} \\
\tan \left( {\dfrac{\pi }{{12}}} \right) = \dfrac{{\sqrt 3 - 1}}{{\sqrt 3 + 1}} \\ $
It should be simplified by rationalizing it, multiply numerator and denominator by $\left( {\sqrt 3 - 1} \right)$
\[ \tan \left( {\dfrac{\pi }{{12}}} \right) = \dfrac{{\sqrt 3 - 1}}{{\sqrt 3 + 1}} \times \dfrac{{\sqrt 3 - 1}}{{\sqrt 3 - 1}} \\
\tan \left( {\dfrac{\pi }{{12}}} \right) = \dfrac{{{{\left( {\sqrt 3 - 1} \right)}^2}}}{{\left( {\sqrt 3 + 1} \right)\left( {\sqrt 3 - 1} \right)}} \\ \]
The formula for ${\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab$ and $\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}$
$ \tan \left( {\dfrac{\pi }{{12}}} \right) = \dfrac{{{{\left( {\sqrt 3 } \right)}^2} + {{\left( 1 \right)}^2} - 2\left( {\sqrt 3 } \right)\left( 1 \right)}}{{{{\left( {\sqrt 3 } \right)}^2} - {{\left( 1 \right)}^2}}} \\
\tan \left( {\dfrac{\pi }{{12}}} \right) = \dfrac{{3 + 1 - 2\sqrt 3 }}{{3 - 1}} \\
\tan \left( {\dfrac{\pi }{{12}}} \right) = \dfrac{{4 - 2\sqrt 3 }}{2} \\
\tan \left( {\dfrac{\pi }{{12}}} \right) = 2 - \sqrt 3 \\ $
The value of ${\tan ^2}\left( {\dfrac{\pi }{{12}}} \right) = {\left( {2 - \sqrt 3 } \right)^2}$
It can be expanded by \[{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab\]
\[ {\left( {2 - \sqrt 3 } \right)^2} = {\left( 2 \right)^2} + {\left( {\sqrt 3 } \right)^2} - 2\left( 2 \right)\left( {\sqrt 3 } \right) \\
{\left( {2 - \sqrt 3 } \right)^2} = 4 + 3 - 4\sqrt 3 \\
{\left( {2 - \sqrt 3 } \right)^2} = 7 - 4\sqrt 3 \\ \]
The expression is given as
$E = {\tan ^4}\dfrac{\pi }{{12}} - 14{\tan ^2}\left( {\dfrac{\pi }{4}} \right)$
Take out ${\tan ^2}\dfrac{\pi }{4}$ common
$E = {\tan ^2}\left( {\dfrac{\pi }{{12}}} \right)\left[ {{{\tan }^2}\dfrac{\pi }{{12}} - 14} \right]......(4)$
Substitute the value of ${\tan ^2}\dfrac{\pi }{{12}}$ in equation (3),
$ E = \left( {7 - 4\sqrt 3 } \right)\left( {7 + 4\sqrt 3 } \right) \\
E = \left( {7 - 4\sqrt 3 } \right)\left( {7 + 4\sqrt 3 } \right) \\
E = - \left( {7 - 4\sqrt 3 } \right)\left( {7 + 4\sqrt 3 } \right) \\
E = - \left( {{7^2} - {{\left( {4\sqrt 3 } \right)}^2}} \right) \\
E = - \left( {49 - 48} \right) \\
E = - 1 \\ $
Hence, the correct option is (A).
Note: The angle given in radian may be converted into degree and evaluated based on the convenience.
For simplicity of calculation the angle should be broken down, based on the formula available in the form of sum and difference of tangent of angle.
Complete step by step solution:$\dfrac{\pi }{{12}} = \dfrac{\pi }{3} - \dfrac{\pi }{4}$ ,
Where, [ $\dfrac{\pi }{{12}} = \dfrac{\pi }{{12}} \times \dfrac{{{{180}^o}}}{\pi } = {15^o}$ , $\dfrac{\pi }{3} = \dfrac{\pi }{3} \times \dfrac{{{{180}^o}}}{\pi } = {60^o}$ and $\dfrac{\pi }{4} = \dfrac{\pi }{4} \times \dfrac{{{{180}^o}}}{\pi } = {45^o}$]
To convert angle given into degree from radian multiply by$\dfrac{{{{180}^o}}}{\pi }$ .
Now we know the tangent difference identity formula as.
$\tan \left( {x - y} \right) = \dfrac{{\tan x - \tan y}}{{1 + \tan x.\tan y}}......(1)$
Here, $x = \frac{\pi }{3}$ and $y = \frac{\pi }{4}$
Substitute the value in equation (1),
\[\tan \left( {\dfrac{\pi }{3} - \dfrac{\pi }{4}} \right) = \dfrac{{\tan \left( {\dfrac{\pi }{3}} \right) - \tan \left( {\dfrac{\pi }{4}} \right)}}{{1 + \tan \left( {\dfrac{\pi }{3}} \right)\tan \left( {\dfrac{\pi }{4}} \right)}}......(2)\]
The value of $\tan \left( {\dfrac{\pi }{3}} \right) = \sqrt 3 $ and $\tan \left( {\dfrac{\pi }{4}} \right) = 1$ , substitute it in equation (2)
$ \tan \left( {\dfrac{\pi }{{12}}} \right) = \dfrac{{\sqrt 3 - 1}}{{1 + \left( {\sqrt 3 } \right)\left( 1 \right)}} \\
\tan \left( {\dfrac{\pi }{{12}}} \right) = \dfrac{{\sqrt 3 - 1}}{{\sqrt 3 + 1}} \\ $
It should be simplified by rationalizing it, multiply numerator and denominator by $\left( {\sqrt 3 - 1} \right)$
\[ \tan \left( {\dfrac{\pi }{{12}}} \right) = \dfrac{{\sqrt 3 - 1}}{{\sqrt 3 + 1}} \times \dfrac{{\sqrt 3 - 1}}{{\sqrt 3 - 1}} \\
\tan \left( {\dfrac{\pi }{{12}}} \right) = \dfrac{{{{\left( {\sqrt 3 - 1} \right)}^2}}}{{\left( {\sqrt 3 + 1} \right)\left( {\sqrt 3 - 1} \right)}} \\ \]
The formula for ${\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab$ and $\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}$
$ \tan \left( {\dfrac{\pi }{{12}}} \right) = \dfrac{{{{\left( {\sqrt 3 } \right)}^2} + {{\left( 1 \right)}^2} - 2\left( {\sqrt 3 } \right)\left( 1 \right)}}{{{{\left( {\sqrt 3 } \right)}^2} - {{\left( 1 \right)}^2}}} \\
\tan \left( {\dfrac{\pi }{{12}}} \right) = \dfrac{{3 + 1 - 2\sqrt 3 }}{{3 - 1}} \\
\tan \left( {\dfrac{\pi }{{12}}} \right) = \dfrac{{4 - 2\sqrt 3 }}{2} \\
\tan \left( {\dfrac{\pi }{{12}}} \right) = 2 - \sqrt 3 \\ $
The value of ${\tan ^2}\left( {\dfrac{\pi }{{12}}} \right) = {\left( {2 - \sqrt 3 } \right)^2}$
It can be expanded by \[{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab\]
\[ {\left( {2 - \sqrt 3 } \right)^2} = {\left( 2 \right)^2} + {\left( {\sqrt 3 } \right)^2} - 2\left( 2 \right)\left( {\sqrt 3 } \right) \\
{\left( {2 - \sqrt 3 } \right)^2} = 4 + 3 - 4\sqrt 3 \\
{\left( {2 - \sqrt 3 } \right)^2} = 7 - 4\sqrt 3 \\ \]
The expression is given as
$E = {\tan ^4}\dfrac{\pi }{{12}} - 14{\tan ^2}\left( {\dfrac{\pi }{4}} \right)$
Take out ${\tan ^2}\dfrac{\pi }{4}$ common
$E = {\tan ^2}\left( {\dfrac{\pi }{{12}}} \right)\left[ {{{\tan }^2}\dfrac{\pi }{{12}} - 14} \right]......(4)$
Substitute the value of ${\tan ^2}\dfrac{\pi }{{12}}$ in equation (3),
$ E = \left( {7 - 4\sqrt 3 } \right)\left( {7 + 4\sqrt 3 } \right) \\
E = \left( {7 - 4\sqrt 3 } \right)\left( {7 + 4\sqrt 3 } \right) \\
E = - \left( {7 - 4\sqrt 3 } \right)\left( {7 + 4\sqrt 3 } \right) \\
E = - \left( {{7^2} - {{\left( {4\sqrt 3 } \right)}^2}} \right) \\
E = - \left( {49 - 48} \right) \\
E = - 1 \\ $
Hence, the correct option is (A).
Note: The angle given in radian may be converted into degree and evaluated based on the convenience.
For simplicity of calculation the angle should be broken down, based on the formula available in the form of sum and difference of tangent of angle.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

