Answer
Verified
445.8k+ views
Hint: If the value corresponding to the particular value of angle is not known, then the angle should be broken down into 2 such angles whose values are already known. Then the difference or sum of angle formula should be used. The value of $\tan \left( {x - y} \right) = \dfrac{{\tan x - \tan y}}{{1 + \tan x.\tan y}}$ and $\tan \left( {x + y} \right) =\dfrac{{\tan x + \tan y}}{{1 - \tan x.\tan y}}$. Where x and y are those angles, whose values are known for the tangent function.
Complete step by step solution:$\dfrac{\pi }{{12}} = \dfrac{\pi }{3} - \dfrac{\pi }{4}$ ,
Where, [ $\dfrac{\pi }{{12}} = \dfrac{\pi }{{12}} \times \dfrac{{{{180}^o}}}{\pi } = {15^o}$ , $\dfrac{\pi }{3} = \dfrac{\pi }{3} \times \dfrac{{{{180}^o}}}{\pi } = {60^o}$ and $\dfrac{\pi }{4} = \dfrac{\pi }{4} \times \dfrac{{{{180}^o}}}{\pi } = {45^o}$]
To convert angle given into degree from radian multiply by$\dfrac{{{{180}^o}}}{\pi }$ .
Now we know the tangent difference identity formula as.
$\tan \left( {x - y} \right) = \dfrac{{\tan x - \tan y}}{{1 + \tan x.\tan y}}......(1)$
Here, $x = \frac{\pi }{3}$ and $y = \frac{\pi }{4}$
Substitute the value in equation (1),
\[\tan \left( {\dfrac{\pi }{3} - \dfrac{\pi }{4}} \right) = \dfrac{{\tan \left( {\dfrac{\pi }{3}} \right) - \tan \left( {\dfrac{\pi }{4}} \right)}}{{1 + \tan \left( {\dfrac{\pi }{3}} \right)\tan \left( {\dfrac{\pi }{4}} \right)}}......(2)\]
The value of $\tan \left( {\dfrac{\pi }{3}} \right) = \sqrt 3 $ and $\tan \left( {\dfrac{\pi }{4}} \right) = 1$ , substitute it in equation (2)
$ \tan \left( {\dfrac{\pi }{{12}}} \right) = \dfrac{{\sqrt 3 - 1}}{{1 + \left( {\sqrt 3 } \right)\left( 1 \right)}} \\
\tan \left( {\dfrac{\pi }{{12}}} \right) = \dfrac{{\sqrt 3 - 1}}{{\sqrt 3 + 1}} \\ $
It should be simplified by rationalizing it, multiply numerator and denominator by $\left( {\sqrt 3 - 1} \right)$
\[ \tan \left( {\dfrac{\pi }{{12}}} \right) = \dfrac{{\sqrt 3 - 1}}{{\sqrt 3 + 1}} \times \dfrac{{\sqrt 3 - 1}}{{\sqrt 3 - 1}} \\
\tan \left( {\dfrac{\pi }{{12}}} \right) = \dfrac{{{{\left( {\sqrt 3 - 1} \right)}^2}}}{{\left( {\sqrt 3 + 1} \right)\left( {\sqrt 3 - 1} \right)}} \\ \]
The formula for ${\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab$ and $\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}$
$ \tan \left( {\dfrac{\pi }{{12}}} \right) = \dfrac{{{{\left( {\sqrt 3 } \right)}^2} + {{\left( 1 \right)}^2} - 2\left( {\sqrt 3 } \right)\left( 1 \right)}}{{{{\left( {\sqrt 3 } \right)}^2} - {{\left( 1 \right)}^2}}} \\
\tan \left( {\dfrac{\pi }{{12}}} \right) = \dfrac{{3 + 1 - 2\sqrt 3 }}{{3 - 1}} \\
\tan \left( {\dfrac{\pi }{{12}}} \right) = \dfrac{{4 - 2\sqrt 3 }}{2} \\
\tan \left( {\dfrac{\pi }{{12}}} \right) = 2 - \sqrt 3 \\ $
The value of ${\tan ^2}\left( {\dfrac{\pi }{{12}}} \right) = {\left( {2 - \sqrt 3 } \right)^2}$
It can be expanded by \[{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab\]
\[ {\left( {2 - \sqrt 3 } \right)^2} = {\left( 2 \right)^2} + {\left( {\sqrt 3 } \right)^2} - 2\left( 2 \right)\left( {\sqrt 3 } \right) \\
{\left( {2 - \sqrt 3 } \right)^2} = 4 + 3 - 4\sqrt 3 \\
{\left( {2 - \sqrt 3 } \right)^2} = 7 - 4\sqrt 3 \\ \]
The expression is given as
$E = {\tan ^4}\dfrac{\pi }{{12}} - 14{\tan ^2}\left( {\dfrac{\pi }{4}} \right)$
Take out ${\tan ^2}\dfrac{\pi }{4}$ common
$E = {\tan ^2}\left( {\dfrac{\pi }{{12}}} \right)\left[ {{{\tan }^2}\dfrac{\pi }{{12}} - 14} \right]......(4)$
Substitute the value of ${\tan ^2}\dfrac{\pi }{{12}}$ in equation (3),
$ E = \left( {7 - 4\sqrt 3 } \right)\left( {7 + 4\sqrt 3 } \right) \\
E = \left( {7 - 4\sqrt 3 } \right)\left( {7 + 4\sqrt 3 } \right) \\
E = - \left( {7 - 4\sqrt 3 } \right)\left( {7 + 4\sqrt 3 } \right) \\
E = - \left( {{7^2} - {{\left( {4\sqrt 3 } \right)}^2}} \right) \\
E = - \left( {49 - 48} \right) \\
E = - 1 \\ $
Hence, the correct option is (A).
Note: The angle given in radian may be converted into degree and evaluated based on the convenience.
For simplicity of calculation the angle should be broken down, based on the formula available in the form of sum and difference of tangent of angle.
Complete step by step solution:$\dfrac{\pi }{{12}} = \dfrac{\pi }{3} - \dfrac{\pi }{4}$ ,
Where, [ $\dfrac{\pi }{{12}} = \dfrac{\pi }{{12}} \times \dfrac{{{{180}^o}}}{\pi } = {15^o}$ , $\dfrac{\pi }{3} = \dfrac{\pi }{3} \times \dfrac{{{{180}^o}}}{\pi } = {60^o}$ and $\dfrac{\pi }{4} = \dfrac{\pi }{4} \times \dfrac{{{{180}^o}}}{\pi } = {45^o}$]
To convert angle given into degree from radian multiply by$\dfrac{{{{180}^o}}}{\pi }$ .
Now we know the tangent difference identity formula as.
$\tan \left( {x - y} \right) = \dfrac{{\tan x - \tan y}}{{1 + \tan x.\tan y}}......(1)$
Here, $x = \frac{\pi }{3}$ and $y = \frac{\pi }{4}$
Substitute the value in equation (1),
\[\tan \left( {\dfrac{\pi }{3} - \dfrac{\pi }{4}} \right) = \dfrac{{\tan \left( {\dfrac{\pi }{3}} \right) - \tan \left( {\dfrac{\pi }{4}} \right)}}{{1 + \tan \left( {\dfrac{\pi }{3}} \right)\tan \left( {\dfrac{\pi }{4}} \right)}}......(2)\]
The value of $\tan \left( {\dfrac{\pi }{3}} \right) = \sqrt 3 $ and $\tan \left( {\dfrac{\pi }{4}} \right) = 1$ , substitute it in equation (2)
$ \tan \left( {\dfrac{\pi }{{12}}} \right) = \dfrac{{\sqrt 3 - 1}}{{1 + \left( {\sqrt 3 } \right)\left( 1 \right)}} \\
\tan \left( {\dfrac{\pi }{{12}}} \right) = \dfrac{{\sqrt 3 - 1}}{{\sqrt 3 + 1}} \\ $
It should be simplified by rationalizing it, multiply numerator and denominator by $\left( {\sqrt 3 - 1} \right)$
\[ \tan \left( {\dfrac{\pi }{{12}}} \right) = \dfrac{{\sqrt 3 - 1}}{{\sqrt 3 + 1}} \times \dfrac{{\sqrt 3 - 1}}{{\sqrt 3 - 1}} \\
\tan \left( {\dfrac{\pi }{{12}}} \right) = \dfrac{{{{\left( {\sqrt 3 - 1} \right)}^2}}}{{\left( {\sqrt 3 + 1} \right)\left( {\sqrt 3 - 1} \right)}} \\ \]
The formula for ${\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab$ and $\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}$
$ \tan \left( {\dfrac{\pi }{{12}}} \right) = \dfrac{{{{\left( {\sqrt 3 } \right)}^2} + {{\left( 1 \right)}^2} - 2\left( {\sqrt 3 } \right)\left( 1 \right)}}{{{{\left( {\sqrt 3 } \right)}^2} - {{\left( 1 \right)}^2}}} \\
\tan \left( {\dfrac{\pi }{{12}}} \right) = \dfrac{{3 + 1 - 2\sqrt 3 }}{{3 - 1}} \\
\tan \left( {\dfrac{\pi }{{12}}} \right) = \dfrac{{4 - 2\sqrt 3 }}{2} \\
\tan \left( {\dfrac{\pi }{{12}}} \right) = 2 - \sqrt 3 \\ $
The value of ${\tan ^2}\left( {\dfrac{\pi }{{12}}} \right) = {\left( {2 - \sqrt 3 } \right)^2}$
It can be expanded by \[{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab\]
\[ {\left( {2 - \sqrt 3 } \right)^2} = {\left( 2 \right)^2} + {\left( {\sqrt 3 } \right)^2} - 2\left( 2 \right)\left( {\sqrt 3 } \right) \\
{\left( {2 - \sqrt 3 } \right)^2} = 4 + 3 - 4\sqrt 3 \\
{\left( {2 - \sqrt 3 } \right)^2} = 7 - 4\sqrt 3 \\ \]
The expression is given as
$E = {\tan ^4}\dfrac{\pi }{{12}} - 14{\tan ^2}\left( {\dfrac{\pi }{4}} \right)$
Take out ${\tan ^2}\dfrac{\pi }{4}$ common
$E = {\tan ^2}\left( {\dfrac{\pi }{{12}}} \right)\left[ {{{\tan }^2}\dfrac{\pi }{{12}} - 14} \right]......(4)$
Substitute the value of ${\tan ^2}\dfrac{\pi }{{12}}$ in equation (3),
$ E = \left( {7 - 4\sqrt 3 } \right)\left( {7 + 4\sqrt 3 } \right) \\
E = \left( {7 - 4\sqrt 3 } \right)\left( {7 + 4\sqrt 3 } \right) \\
E = - \left( {7 - 4\sqrt 3 } \right)\left( {7 + 4\sqrt 3 } \right) \\
E = - \left( {{7^2} - {{\left( {4\sqrt 3 } \right)}^2}} \right) \\
E = - \left( {49 - 48} \right) \\
E = - 1 \\ $
Hence, the correct option is (A).
Note: The angle given in radian may be converted into degree and evaluated based on the convenience.
For simplicity of calculation the angle should be broken down, based on the formula available in the form of sum and difference of tangent of angle.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Difference Between Plant Cell and Animal Cell
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
At which age domestication of animals started A Neolithic class 11 social science CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Summary of the poem Where the Mind is Without Fear class 8 english CBSE
One cusec is equal to how many liters class 8 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE