
If $\theta $ and $\phi $ are angles in the first quadrant such that $\tan \theta =\dfrac{1}{7}$ and $\sin \phi =\dfrac{1}{\sqrt{10}}$, then
A. $\theta +2\phi ={{90}^{\circ }}$
B. $\theta +2\phi ={{30}^{\circ }}$
C. $\theta +2\phi ={{75}^{\circ }}$
D. $\theta +2\phi ={{45}^{\circ }}$
Answer
516.6k+ views
Hint: we need to find the value of $\theta +2\phi $. Therefore, using the value $\sin \phi =\dfrac{1}{\sqrt{10}}$ we find the value of $\cos \phi $, $\tan \phi $ and $\tan 2\phi $. Then we use the identity of $\tan \left( \theta +2\phi \right)=\dfrac{\tan \theta +\tan \left( 2\phi \right)}{1-\tan \theta \tan \left( 2\phi \right)}$ to find the value of $\theta +2\phi $.
Complete step-by-step solution:
It is given that $\tan \theta =\dfrac{1}{7}$ and $\sin \phi =\dfrac{1}{\sqrt{10}}$. From the value of $\sin \phi =\dfrac{1}{\sqrt{10}}$, we try to find the value of $\cos \phi $ and $\tan \phi $.
We have the identity where ${{\sin }^{2}}\phi +{{\cos }^{2}}\phi =1$. This gives $\cos \phi =\sqrt{1-{{\sin }^{2}}\phi }$.
We take only the positive values as $\theta $ and $\phi $ are angles in the first quadrant which means any ratio of those angles will give positive value.
Putting the value, we get $\cos \phi =\sqrt{1-{{\left( \dfrac{1}{\sqrt{10}} \right)}^{2}}}=\sqrt{1-\dfrac{1}{10}}=\dfrac{3}{\sqrt{10}}$.
Now we try to find the value of \[\tan \phi =\dfrac{\sin \phi }{\cos \phi }=\dfrac{\dfrac{1}{\sqrt{10}}}{\dfrac{3}{\sqrt{10}}}=\dfrac{1}{3}\].
From the value of $\tan \phi $, we try to find the value of $\tan 2\phi $ where $\tan 2\phi =\dfrac{2\tan \phi }{1-{{\tan }^{2}}\phi }$.
Putting the values, we get $\tan 2\phi =\dfrac{2\left( \dfrac{1}{3} \right)}{1-{{\left( \dfrac{1}{3} \right)}^{2}}}=\dfrac{3}{4}$.
From the given equations in options, we can evaluate that we need the value of $\theta +2\phi $.
We have the associate angle formula of $\tan \left( A+B \right)=\dfrac{\tan A+\tan B}{1-\tan A\tan B}$.
We put the values of \[A=\theta ,B=2\phi \] and get
$\tan \left( \theta +2\phi \right)=\dfrac{\tan \theta +\tan \left( 2\phi \right)}{1-\tan \theta \tan \left( 2\phi \right)}$.
Now we put the values of the required ratios as $\tan \theta =\dfrac{1}{7}$ and \[\tan \left( 2\phi \right)=\dfrac{3}{4}\].
$\tan \left( \theta +2\phi \right)=\dfrac{\tan \theta +\tan \left( 2\phi \right)}{1-\tan \theta \tan \left( 2\phi \right)}=\dfrac{\dfrac{1}{7}+\dfrac{3}{4}}{1-\dfrac{1}{7}\times \dfrac{3}{4}}$.
Now we simplify the equation to get $\tan \left( \theta +2\phi \right)=\dfrac{4+21}{28-3}=\dfrac{25}{25}=1$.
We now equate the value for our known values of ratio tan where $\tan \left( \theta +2\phi \right)=1=\tan \left( {{45}^{\circ }} \right)$
This gives $\left( \theta +2\phi \right)={{45}^{\circ }}$. The correct option is D.
Note: We need to be careful about the sign of the ratios. The quadrant dictates the signs and therefore if anything is not mentioned then we have to consider all possible choices.
Complete step-by-step solution:
It is given that $\tan \theta =\dfrac{1}{7}$ and $\sin \phi =\dfrac{1}{\sqrt{10}}$. From the value of $\sin \phi =\dfrac{1}{\sqrt{10}}$, we try to find the value of $\cos \phi $ and $\tan \phi $.
We have the identity where ${{\sin }^{2}}\phi +{{\cos }^{2}}\phi =1$. This gives $\cos \phi =\sqrt{1-{{\sin }^{2}}\phi }$.
We take only the positive values as $\theta $ and $\phi $ are angles in the first quadrant which means any ratio of those angles will give positive value.
Putting the value, we get $\cos \phi =\sqrt{1-{{\left( \dfrac{1}{\sqrt{10}} \right)}^{2}}}=\sqrt{1-\dfrac{1}{10}}=\dfrac{3}{\sqrt{10}}$.
Now we try to find the value of \[\tan \phi =\dfrac{\sin \phi }{\cos \phi }=\dfrac{\dfrac{1}{\sqrt{10}}}{\dfrac{3}{\sqrt{10}}}=\dfrac{1}{3}\].
From the value of $\tan \phi $, we try to find the value of $\tan 2\phi $ where $\tan 2\phi =\dfrac{2\tan \phi }{1-{{\tan }^{2}}\phi }$.
Putting the values, we get $\tan 2\phi =\dfrac{2\left( \dfrac{1}{3} \right)}{1-{{\left( \dfrac{1}{3} \right)}^{2}}}=\dfrac{3}{4}$.
From the given equations in options, we can evaluate that we need the value of $\theta +2\phi $.
We have the associate angle formula of $\tan \left( A+B \right)=\dfrac{\tan A+\tan B}{1-\tan A\tan B}$.
We put the values of \[A=\theta ,B=2\phi \] and get
$\tan \left( \theta +2\phi \right)=\dfrac{\tan \theta +\tan \left( 2\phi \right)}{1-\tan \theta \tan \left( 2\phi \right)}$.
Now we put the values of the required ratios as $\tan \theta =\dfrac{1}{7}$ and \[\tan \left( 2\phi \right)=\dfrac{3}{4}\].
$\tan \left( \theta +2\phi \right)=\dfrac{\tan \theta +\tan \left( 2\phi \right)}{1-\tan \theta \tan \left( 2\phi \right)}=\dfrac{\dfrac{1}{7}+\dfrac{3}{4}}{1-\dfrac{1}{7}\times \dfrac{3}{4}}$.
Now we simplify the equation to get $\tan \left( \theta +2\phi \right)=\dfrac{4+21}{28-3}=\dfrac{25}{25}=1$.
We now equate the value for our known values of ratio tan where $\tan \left( \theta +2\phi \right)=1=\tan \left( {{45}^{\circ }} \right)$
This gives $\left( \theta +2\phi \right)={{45}^{\circ }}$. The correct option is D.
Note: We need to be careful about the sign of the ratios. The quadrant dictates the signs and therefore if anything is not mentioned then we have to consider all possible choices.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

