
If $\theta $ and $\phi $ are angles in the first quadrant such that $\tan \theta =\dfrac{1}{7}$ and $\sin \phi =\dfrac{1}{\sqrt{10}}$, then
A. $\theta +2\phi ={{90}^{\circ }}$
B. $\theta +2\phi ={{30}^{\circ }}$
C. $\theta +2\phi ={{75}^{\circ }}$
D. $\theta +2\phi ={{45}^{\circ }}$
Answer
531.6k+ views
Hint: we need to find the value of $\theta +2\phi $. Therefore, using the value $\sin \phi =\dfrac{1}{\sqrt{10}}$ we find the value of $\cos \phi $, $\tan \phi $ and $\tan 2\phi $. Then we use the identity of $\tan \left( \theta +2\phi \right)=\dfrac{\tan \theta +\tan \left( 2\phi \right)}{1-\tan \theta \tan \left( 2\phi \right)}$ to find the value of $\theta +2\phi $.
Complete step-by-step solution:
It is given that $\tan \theta =\dfrac{1}{7}$ and $\sin \phi =\dfrac{1}{\sqrt{10}}$. From the value of $\sin \phi =\dfrac{1}{\sqrt{10}}$, we try to find the value of $\cos \phi $ and $\tan \phi $.
We have the identity where ${{\sin }^{2}}\phi +{{\cos }^{2}}\phi =1$. This gives $\cos \phi =\sqrt{1-{{\sin }^{2}}\phi }$.
We take only the positive values as $\theta $ and $\phi $ are angles in the first quadrant which means any ratio of those angles will give positive value.
Putting the value, we get $\cos \phi =\sqrt{1-{{\left( \dfrac{1}{\sqrt{10}} \right)}^{2}}}=\sqrt{1-\dfrac{1}{10}}=\dfrac{3}{\sqrt{10}}$.
Now we try to find the value of \[\tan \phi =\dfrac{\sin \phi }{\cos \phi }=\dfrac{\dfrac{1}{\sqrt{10}}}{\dfrac{3}{\sqrt{10}}}=\dfrac{1}{3}\].
From the value of $\tan \phi $, we try to find the value of $\tan 2\phi $ where $\tan 2\phi =\dfrac{2\tan \phi }{1-{{\tan }^{2}}\phi }$.
Putting the values, we get $\tan 2\phi =\dfrac{2\left( \dfrac{1}{3} \right)}{1-{{\left( \dfrac{1}{3} \right)}^{2}}}=\dfrac{3}{4}$.
From the given equations in options, we can evaluate that we need the value of $\theta +2\phi $.
We have the associate angle formula of $\tan \left( A+B \right)=\dfrac{\tan A+\tan B}{1-\tan A\tan B}$.
We put the values of \[A=\theta ,B=2\phi \] and get
$\tan \left( \theta +2\phi \right)=\dfrac{\tan \theta +\tan \left( 2\phi \right)}{1-\tan \theta \tan \left( 2\phi \right)}$.
Now we put the values of the required ratios as $\tan \theta =\dfrac{1}{7}$ and \[\tan \left( 2\phi \right)=\dfrac{3}{4}\].
$\tan \left( \theta +2\phi \right)=\dfrac{\tan \theta +\tan \left( 2\phi \right)}{1-\tan \theta \tan \left( 2\phi \right)}=\dfrac{\dfrac{1}{7}+\dfrac{3}{4}}{1-\dfrac{1}{7}\times \dfrac{3}{4}}$.
Now we simplify the equation to get $\tan \left( \theta +2\phi \right)=\dfrac{4+21}{28-3}=\dfrac{25}{25}=1$.
We now equate the value for our known values of ratio tan where $\tan \left( \theta +2\phi \right)=1=\tan \left( {{45}^{\circ }} \right)$
This gives $\left( \theta +2\phi \right)={{45}^{\circ }}$. The correct option is D.
Note: We need to be careful about the sign of the ratios. The quadrant dictates the signs and therefore if anything is not mentioned then we have to consider all possible choices.
Complete step-by-step solution:
It is given that $\tan \theta =\dfrac{1}{7}$ and $\sin \phi =\dfrac{1}{\sqrt{10}}$. From the value of $\sin \phi =\dfrac{1}{\sqrt{10}}$, we try to find the value of $\cos \phi $ and $\tan \phi $.
We have the identity where ${{\sin }^{2}}\phi +{{\cos }^{2}}\phi =1$. This gives $\cos \phi =\sqrt{1-{{\sin }^{2}}\phi }$.
We take only the positive values as $\theta $ and $\phi $ are angles in the first quadrant which means any ratio of those angles will give positive value.
Putting the value, we get $\cos \phi =\sqrt{1-{{\left( \dfrac{1}{\sqrt{10}} \right)}^{2}}}=\sqrt{1-\dfrac{1}{10}}=\dfrac{3}{\sqrt{10}}$.
Now we try to find the value of \[\tan \phi =\dfrac{\sin \phi }{\cos \phi }=\dfrac{\dfrac{1}{\sqrt{10}}}{\dfrac{3}{\sqrt{10}}}=\dfrac{1}{3}\].
From the value of $\tan \phi $, we try to find the value of $\tan 2\phi $ where $\tan 2\phi =\dfrac{2\tan \phi }{1-{{\tan }^{2}}\phi }$.
Putting the values, we get $\tan 2\phi =\dfrac{2\left( \dfrac{1}{3} \right)}{1-{{\left( \dfrac{1}{3} \right)}^{2}}}=\dfrac{3}{4}$.
From the given equations in options, we can evaluate that we need the value of $\theta +2\phi $.
We have the associate angle formula of $\tan \left( A+B \right)=\dfrac{\tan A+\tan B}{1-\tan A\tan B}$.
We put the values of \[A=\theta ,B=2\phi \] and get
$\tan \left( \theta +2\phi \right)=\dfrac{\tan \theta +\tan \left( 2\phi \right)}{1-\tan \theta \tan \left( 2\phi \right)}$.
Now we put the values of the required ratios as $\tan \theta =\dfrac{1}{7}$ and \[\tan \left( 2\phi \right)=\dfrac{3}{4}\].
$\tan \left( \theta +2\phi \right)=\dfrac{\tan \theta +\tan \left( 2\phi \right)}{1-\tan \theta \tan \left( 2\phi \right)}=\dfrac{\dfrac{1}{7}+\dfrac{3}{4}}{1-\dfrac{1}{7}\times \dfrac{3}{4}}$.
Now we simplify the equation to get $\tan \left( \theta +2\phi \right)=\dfrac{4+21}{28-3}=\dfrac{25}{25}=1$.
We now equate the value for our known values of ratio tan where $\tan \left( \theta +2\phi \right)=1=\tan \left( {{45}^{\circ }} \right)$
This gives $\left( \theta +2\phi \right)={{45}^{\circ }}$. The correct option is D.
Note: We need to be careful about the sign of the ratios. The quadrant dictates the signs and therefore if anything is not mentioned then we have to consider all possible choices.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

