
$ {\text{If }}\theta = {30^ \circ },{\text{ verify that:}} \\
\left( {\text{i}} \right){\text{tan2}}\theta {\text{ = }}\dfrac{{2{\text{tan}}\theta }}{{1 - {\text{ta}}{{\text{n}}^2}\theta }} \\
\left( {{\text{ii}}} \right){\text{tan2}}\theta {\text{ = }}\dfrac{{{\text{4tan}}\theta }}{{1 + {\text{ta}}{{\text{n}}^2}\theta }} \\
\left( {{\text{iii}}} \right){\text{cos2}}\theta {\text{ = }}\dfrac{{1 - {\text{ta}}{{\text{n}}^2}\theta }}{{1 + {\text{ta}}{{\text{n}}^2}\theta }} \\
\left( {{\text{iv}}} \right){\text{cos3}}\theta {\text{ = 4co}}{{\text{s}}^3}\theta - 3{\text{cos}}\theta \\$
Answer
582.9k+ views
Hint: In this collection of questions we have to solve Left Hand Side(LHS) and Right Hand Side(RHS) separately for each question. Here we just need to put the value of \[\theta = {30^ \circ }\] in both LHS and RHS. If we get the same value then the LHS = RHS.
Complete step-by-step answer:
\[\left( {\text{i}} \right){\text{tan2}}\theta {\text{ = }}\dfrac{{2{\text{tan}}\theta }}{{1 - {\text{ta}}{{\text{n}}^2}\theta }}\]
On putting$\theta = {30^ \circ }$ in LHS, we get
$
\Rightarrow {\text{tan2}}\theta \\
\Rightarrow {\text{tan2(3}}{0^ \circ }) \\
\Rightarrow \tan {60^ \circ } \\
$
And we know, $\tan {60^ \circ } = \sqrt 3 $
Then,
$
\Rightarrow {\text{tan}}{60^ \circ } \\
\Rightarrow \sqrt 3 {\text{ ---------- eq}}{\text{.1}} \\
$
On putting$\theta = {30^ \circ }$ in RHS, we get
$
\Rightarrow \dfrac{{2{\text{tan}}\theta }}{{1 - {\text{ta}}{{\text{n}}^2}\theta }} \\
\Rightarrow \dfrac{{2{\text{tan3}}{0^ \circ }}}{{1 - {\text{ta}}{{\text{n}}^2}{{30}^ \circ }}} \\
$
And we know $\tan {30^ \circ } = \dfrac{1}{{\sqrt 3 }}$
Then,
$
\Rightarrow \dfrac{{2(\dfrac{1}{{\sqrt 3 }})}}{{1 - {{(\dfrac{1}{{\sqrt 3 }})}^2}}}{\text{ }} \\
\Rightarrow \sqrt 3 {\text{ -------- eq}}{\text{.2}} \\
$
From eq.1 and eq.2 we observe that
LHS=RHS Hence Proved
\[\left( {{\text{ii}}} \right){\text{tan2}}\theta {\text{ = }}\dfrac{{{\text{4tan}}\theta }}{{1 + {\text{ta}}{{\text{n}}^2}\theta }}\]
On putting$\theta = {30^ \circ }$ in LHS, we get
$
\Rightarrow {\text{tan2}}\theta \\
\Rightarrow {\text{tan2(3}}{0^ \circ }) \\
\Rightarrow {\text{tan}}{60^ \circ } \\
$
And we know, $\tan {60^ \circ } = \sqrt 3 $
Then,
$
\Rightarrow {\text{tan}}{60^ \circ } \\
\Rightarrow \sqrt 3 {\text{ --------- eq}}{\text{.3}} \\
$
On putting$\theta = {30^ \circ }$ in RHS, we get
$
\Rightarrow \dfrac{{{\text{4tan}}\theta }}{{1 + {\text{ta}}{{\text{n}}^2}\theta }} \\
\Rightarrow \dfrac{{{\text{4tan3}}{0^ \circ }}}{{1 + {\text{ta}}{{\text{n}}^2}{{30}^ \circ }}} \\
$
And we know $\tan {30^ \circ } = \dfrac{1}{{\sqrt 3 }}$
Then,
$
\Rightarrow \dfrac{{4(\dfrac{1}{{\sqrt 3 }})}}{{1 + {{(\dfrac{1}{{\sqrt 3 }})}^2}}} \\
\Rightarrow \sqrt 3 {\text{ ------- eq}}{\text{.4}} \\
$
From eq.3 and eq.4 we observe that
LHS=RHS Hence Proved
\[\left( {{\text{iii}}} \right){\text{cos2}}\theta {\text{ = }}\dfrac{{1 - {\text{ta}}{{\text{n}}^2}\theta }}{{1 + {\text{ta}}{{\text{n}}^2}\theta }}\]
On putting$\theta = {30^ \circ }$ in LHS, we get
$
\Rightarrow {\text{cos2}}\theta \\
\Rightarrow \cos {\text{2(3}}{0^ \circ }) \\
$
And, we $\cos {60^ \circ } = \dfrac{1}{2}$
$
\Rightarrow \cos {60^ \circ } \\
\Rightarrow \dfrac{1}{2}{\text{ -------- eq}}{\text{.5}} \\
$
On putting$\theta = {30^ \circ }$ in RHS, we get
$
\Rightarrow \dfrac{{1 - {\text{ta}}{{\text{n}}^2}\theta }}{{1 + {\text{ta}}{{\text{n}}^2}\theta }} \\
\Rightarrow \dfrac{{1 - {\text{ta}}{{\text{n}}^2}{{30}^ \circ }}}{{1 + {\text{ta}}{{\text{n}}^2}{{30}^ \circ }}} \\
$
And we know $\tan {30^ \circ } = \dfrac{1}{{\sqrt 3 }}$
Then,
$
\Rightarrow {\dfrac{{1 - {{(\dfrac{1}{{\sqrt 3 }})}^2}}}{{1 + {{(\dfrac{1}{{\sqrt 3 }})}^2}}}^{}}{\text{ }} \\
\Rightarrow \dfrac{1}{2}{\text{ ------- eq}}{\text{.6}} \\
$
From eq.5 and eq.6 we observe that
LHS=RHS Hence Proved
\[\left( {{\text{iv}}} \right){\text{cos3}}\theta {\text{ = 4co}}{{\text{s}}^3}\theta - 3{\text{cos}}\theta \]
On putting$\theta = {30^ \circ }$ in LHS, we get
$
\Rightarrow {\text{cos2}}\theta \\
\Rightarrow \cos 3{\text{(3}}{0^ \circ }) \\
$
And, we know ${\text{cos9}}{0^ \circ } = 0$
Then,
$
\Rightarrow \cos {90^ \circ } \\
\Rightarrow 0{\text{ -------eq}}{\text{.7}} \\
$
On putting$\theta = {30^ \circ }$ in RHS, we get
$
\Rightarrow 4{\text{co}}{{\text{s}}^3}\theta - {\text{3cos}}\theta \\
\Rightarrow 4{\text{co}}{{\text{s}}^3}{30^ \circ } - {\text{3cos}}{30^ \circ } \\
$
And, we know ${\text{cos 3}}{0^ \circ } = \dfrac{{\sqrt 3 }}{2}$
Then,
$
\Rightarrow 4{(\dfrac{{\sqrt 3 }}{2})^3} - 3(\dfrac{{\sqrt 3 }}{2}){\text{ }} \\
\Rightarrow 0{\text{ -------eq}}{\text{.8}} \\
$
From eq.7 and eq.8 we observe that
LHS=RHS Hence Proved
Note: Whenever you get this type of question the key concept to solve this question is to evaluate the separate Left Hand Side(LHS) and Right Hand Side(RHS) and check if both are the same then the given question is true otherwise false. And one more thing to remember is to learn the commonly used trigonometric angles values like $\tan {30^ \circ } = \dfrac{1}{{\sqrt 3 }},\cos {30^ \circ } = \dfrac{{\sqrt 3 }}{2}$ etc.
Complete step-by-step answer:
\[\left( {\text{i}} \right){\text{tan2}}\theta {\text{ = }}\dfrac{{2{\text{tan}}\theta }}{{1 - {\text{ta}}{{\text{n}}^2}\theta }}\]
On putting$\theta = {30^ \circ }$ in LHS, we get
$
\Rightarrow {\text{tan2}}\theta \\
\Rightarrow {\text{tan2(3}}{0^ \circ }) \\
\Rightarrow \tan {60^ \circ } \\
$
And we know, $\tan {60^ \circ } = \sqrt 3 $
Then,
$
\Rightarrow {\text{tan}}{60^ \circ } \\
\Rightarrow \sqrt 3 {\text{ ---------- eq}}{\text{.1}} \\
$
On putting$\theta = {30^ \circ }$ in RHS, we get
$
\Rightarrow \dfrac{{2{\text{tan}}\theta }}{{1 - {\text{ta}}{{\text{n}}^2}\theta }} \\
\Rightarrow \dfrac{{2{\text{tan3}}{0^ \circ }}}{{1 - {\text{ta}}{{\text{n}}^2}{{30}^ \circ }}} \\
$
And we know $\tan {30^ \circ } = \dfrac{1}{{\sqrt 3 }}$
Then,
$
\Rightarrow \dfrac{{2(\dfrac{1}{{\sqrt 3 }})}}{{1 - {{(\dfrac{1}{{\sqrt 3 }})}^2}}}{\text{ }} \\
\Rightarrow \sqrt 3 {\text{ -------- eq}}{\text{.2}} \\
$
From eq.1 and eq.2 we observe that
LHS=RHS Hence Proved
\[\left( {{\text{ii}}} \right){\text{tan2}}\theta {\text{ = }}\dfrac{{{\text{4tan}}\theta }}{{1 + {\text{ta}}{{\text{n}}^2}\theta }}\]
On putting$\theta = {30^ \circ }$ in LHS, we get
$
\Rightarrow {\text{tan2}}\theta \\
\Rightarrow {\text{tan2(3}}{0^ \circ }) \\
\Rightarrow {\text{tan}}{60^ \circ } \\
$
And we know, $\tan {60^ \circ } = \sqrt 3 $
Then,
$
\Rightarrow {\text{tan}}{60^ \circ } \\
\Rightarrow \sqrt 3 {\text{ --------- eq}}{\text{.3}} \\
$
On putting$\theta = {30^ \circ }$ in RHS, we get
$
\Rightarrow \dfrac{{{\text{4tan}}\theta }}{{1 + {\text{ta}}{{\text{n}}^2}\theta }} \\
\Rightarrow \dfrac{{{\text{4tan3}}{0^ \circ }}}{{1 + {\text{ta}}{{\text{n}}^2}{{30}^ \circ }}} \\
$
And we know $\tan {30^ \circ } = \dfrac{1}{{\sqrt 3 }}$
Then,
$
\Rightarrow \dfrac{{4(\dfrac{1}{{\sqrt 3 }})}}{{1 + {{(\dfrac{1}{{\sqrt 3 }})}^2}}} \\
\Rightarrow \sqrt 3 {\text{ ------- eq}}{\text{.4}} \\
$
From eq.3 and eq.4 we observe that
LHS=RHS Hence Proved
\[\left( {{\text{iii}}} \right){\text{cos2}}\theta {\text{ = }}\dfrac{{1 - {\text{ta}}{{\text{n}}^2}\theta }}{{1 + {\text{ta}}{{\text{n}}^2}\theta }}\]
On putting$\theta = {30^ \circ }$ in LHS, we get
$
\Rightarrow {\text{cos2}}\theta \\
\Rightarrow \cos {\text{2(3}}{0^ \circ }) \\
$
And, we $\cos {60^ \circ } = \dfrac{1}{2}$
$
\Rightarrow \cos {60^ \circ } \\
\Rightarrow \dfrac{1}{2}{\text{ -------- eq}}{\text{.5}} \\
$
On putting$\theta = {30^ \circ }$ in RHS, we get
$
\Rightarrow \dfrac{{1 - {\text{ta}}{{\text{n}}^2}\theta }}{{1 + {\text{ta}}{{\text{n}}^2}\theta }} \\
\Rightarrow \dfrac{{1 - {\text{ta}}{{\text{n}}^2}{{30}^ \circ }}}{{1 + {\text{ta}}{{\text{n}}^2}{{30}^ \circ }}} \\
$
And we know $\tan {30^ \circ } = \dfrac{1}{{\sqrt 3 }}$
Then,
$
\Rightarrow {\dfrac{{1 - {{(\dfrac{1}{{\sqrt 3 }})}^2}}}{{1 + {{(\dfrac{1}{{\sqrt 3 }})}^2}}}^{}}{\text{ }} \\
\Rightarrow \dfrac{1}{2}{\text{ ------- eq}}{\text{.6}} \\
$
From eq.5 and eq.6 we observe that
LHS=RHS Hence Proved
\[\left( {{\text{iv}}} \right){\text{cos3}}\theta {\text{ = 4co}}{{\text{s}}^3}\theta - 3{\text{cos}}\theta \]
On putting$\theta = {30^ \circ }$ in LHS, we get
$
\Rightarrow {\text{cos2}}\theta \\
\Rightarrow \cos 3{\text{(3}}{0^ \circ }) \\
$
And, we know ${\text{cos9}}{0^ \circ } = 0$
Then,
$
\Rightarrow \cos {90^ \circ } \\
\Rightarrow 0{\text{ -------eq}}{\text{.7}} \\
$
On putting$\theta = {30^ \circ }$ in RHS, we get
$
\Rightarrow 4{\text{co}}{{\text{s}}^3}\theta - {\text{3cos}}\theta \\
\Rightarrow 4{\text{co}}{{\text{s}}^3}{30^ \circ } - {\text{3cos}}{30^ \circ } \\
$
And, we know ${\text{cos 3}}{0^ \circ } = \dfrac{{\sqrt 3 }}{2}$
Then,
$
\Rightarrow 4{(\dfrac{{\sqrt 3 }}{2})^3} - 3(\dfrac{{\sqrt 3 }}{2}){\text{ }} \\
\Rightarrow 0{\text{ -------eq}}{\text{.8}} \\
$
From eq.7 and eq.8 we observe that
LHS=RHS Hence Proved
Note: Whenever you get this type of question the key concept to solve this question is to evaluate the separate Left Hand Side(LHS) and Right Hand Side(RHS) and check if both are the same then the given question is true otherwise false. And one more thing to remember is to learn the commonly used trigonometric angles values like $\tan {30^ \circ } = \dfrac{1}{{\sqrt 3 }},\cos {30^ \circ } = \dfrac{{\sqrt 3 }}{2}$ etc.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

