
$ {\text{If }}\theta = {30^ \circ },{\text{ verify that:}} \\
\left( {\text{i}} \right){\text{tan2}}\theta {\text{ = }}\dfrac{{2{\text{tan}}\theta }}{{1 - {\text{ta}}{{\text{n}}^2}\theta }} \\
\left( {{\text{ii}}} \right){\text{tan2}}\theta {\text{ = }}\dfrac{{{\text{4tan}}\theta }}{{1 + {\text{ta}}{{\text{n}}^2}\theta }} \\
\left( {{\text{iii}}} \right){\text{cos2}}\theta {\text{ = }}\dfrac{{1 - {\text{ta}}{{\text{n}}^2}\theta }}{{1 + {\text{ta}}{{\text{n}}^2}\theta }} \\
\left( {{\text{iv}}} \right){\text{cos3}}\theta {\text{ = 4co}}{{\text{s}}^3}\theta - 3{\text{cos}}\theta \\$
Answer
597k+ views
Hint: In this collection of questions we have to solve Left Hand Side(LHS) and Right Hand Side(RHS) separately for each question. Here we just need to put the value of \[\theta = {30^ \circ }\] in both LHS and RHS. If we get the same value then the LHS = RHS.
Complete step-by-step answer:
\[\left( {\text{i}} \right){\text{tan2}}\theta {\text{ = }}\dfrac{{2{\text{tan}}\theta }}{{1 - {\text{ta}}{{\text{n}}^2}\theta }}\]
On putting$\theta = {30^ \circ }$ in LHS, we get
$
\Rightarrow {\text{tan2}}\theta \\
\Rightarrow {\text{tan2(3}}{0^ \circ }) \\
\Rightarrow \tan {60^ \circ } \\
$
And we know, $\tan {60^ \circ } = \sqrt 3 $
Then,
$
\Rightarrow {\text{tan}}{60^ \circ } \\
\Rightarrow \sqrt 3 {\text{ ---------- eq}}{\text{.1}} \\
$
On putting$\theta = {30^ \circ }$ in RHS, we get
$
\Rightarrow \dfrac{{2{\text{tan}}\theta }}{{1 - {\text{ta}}{{\text{n}}^2}\theta }} \\
\Rightarrow \dfrac{{2{\text{tan3}}{0^ \circ }}}{{1 - {\text{ta}}{{\text{n}}^2}{{30}^ \circ }}} \\
$
And we know $\tan {30^ \circ } = \dfrac{1}{{\sqrt 3 }}$
Then,
$
\Rightarrow \dfrac{{2(\dfrac{1}{{\sqrt 3 }})}}{{1 - {{(\dfrac{1}{{\sqrt 3 }})}^2}}}{\text{ }} \\
\Rightarrow \sqrt 3 {\text{ -------- eq}}{\text{.2}} \\
$
From eq.1 and eq.2 we observe that
LHS=RHS Hence Proved
\[\left( {{\text{ii}}} \right){\text{tan2}}\theta {\text{ = }}\dfrac{{{\text{4tan}}\theta }}{{1 + {\text{ta}}{{\text{n}}^2}\theta }}\]
On putting$\theta = {30^ \circ }$ in LHS, we get
$
\Rightarrow {\text{tan2}}\theta \\
\Rightarrow {\text{tan2(3}}{0^ \circ }) \\
\Rightarrow {\text{tan}}{60^ \circ } \\
$
And we know, $\tan {60^ \circ } = \sqrt 3 $
Then,
$
\Rightarrow {\text{tan}}{60^ \circ } \\
\Rightarrow \sqrt 3 {\text{ --------- eq}}{\text{.3}} \\
$
On putting$\theta = {30^ \circ }$ in RHS, we get
$
\Rightarrow \dfrac{{{\text{4tan}}\theta }}{{1 + {\text{ta}}{{\text{n}}^2}\theta }} \\
\Rightarrow \dfrac{{{\text{4tan3}}{0^ \circ }}}{{1 + {\text{ta}}{{\text{n}}^2}{{30}^ \circ }}} \\
$
And we know $\tan {30^ \circ } = \dfrac{1}{{\sqrt 3 }}$
Then,
$
\Rightarrow \dfrac{{4(\dfrac{1}{{\sqrt 3 }})}}{{1 + {{(\dfrac{1}{{\sqrt 3 }})}^2}}} \\
\Rightarrow \sqrt 3 {\text{ ------- eq}}{\text{.4}} \\
$
From eq.3 and eq.4 we observe that
LHS=RHS Hence Proved
\[\left( {{\text{iii}}} \right){\text{cos2}}\theta {\text{ = }}\dfrac{{1 - {\text{ta}}{{\text{n}}^2}\theta }}{{1 + {\text{ta}}{{\text{n}}^2}\theta }}\]
On putting$\theta = {30^ \circ }$ in LHS, we get
$
\Rightarrow {\text{cos2}}\theta \\
\Rightarrow \cos {\text{2(3}}{0^ \circ }) \\
$
And, we $\cos {60^ \circ } = \dfrac{1}{2}$
$
\Rightarrow \cos {60^ \circ } \\
\Rightarrow \dfrac{1}{2}{\text{ -------- eq}}{\text{.5}} \\
$
On putting$\theta = {30^ \circ }$ in RHS, we get
$
\Rightarrow \dfrac{{1 - {\text{ta}}{{\text{n}}^2}\theta }}{{1 + {\text{ta}}{{\text{n}}^2}\theta }} \\
\Rightarrow \dfrac{{1 - {\text{ta}}{{\text{n}}^2}{{30}^ \circ }}}{{1 + {\text{ta}}{{\text{n}}^2}{{30}^ \circ }}} \\
$
And we know $\tan {30^ \circ } = \dfrac{1}{{\sqrt 3 }}$
Then,
$
\Rightarrow {\dfrac{{1 - {{(\dfrac{1}{{\sqrt 3 }})}^2}}}{{1 + {{(\dfrac{1}{{\sqrt 3 }})}^2}}}^{}}{\text{ }} \\
\Rightarrow \dfrac{1}{2}{\text{ ------- eq}}{\text{.6}} \\
$
From eq.5 and eq.6 we observe that
LHS=RHS Hence Proved
\[\left( {{\text{iv}}} \right){\text{cos3}}\theta {\text{ = 4co}}{{\text{s}}^3}\theta - 3{\text{cos}}\theta \]
On putting$\theta = {30^ \circ }$ in LHS, we get
$
\Rightarrow {\text{cos2}}\theta \\
\Rightarrow \cos 3{\text{(3}}{0^ \circ }) \\
$
And, we know ${\text{cos9}}{0^ \circ } = 0$
Then,
$
\Rightarrow \cos {90^ \circ } \\
\Rightarrow 0{\text{ -------eq}}{\text{.7}} \\
$
On putting$\theta = {30^ \circ }$ in RHS, we get
$
\Rightarrow 4{\text{co}}{{\text{s}}^3}\theta - {\text{3cos}}\theta \\
\Rightarrow 4{\text{co}}{{\text{s}}^3}{30^ \circ } - {\text{3cos}}{30^ \circ } \\
$
And, we know ${\text{cos 3}}{0^ \circ } = \dfrac{{\sqrt 3 }}{2}$
Then,
$
\Rightarrow 4{(\dfrac{{\sqrt 3 }}{2})^3} - 3(\dfrac{{\sqrt 3 }}{2}){\text{ }} \\
\Rightarrow 0{\text{ -------eq}}{\text{.8}} \\
$
From eq.7 and eq.8 we observe that
LHS=RHS Hence Proved
Note: Whenever you get this type of question the key concept to solve this question is to evaluate the separate Left Hand Side(LHS) and Right Hand Side(RHS) and check if both are the same then the given question is true otherwise false. And one more thing to remember is to learn the commonly used trigonometric angles values like $\tan {30^ \circ } = \dfrac{1}{{\sqrt 3 }},\cos {30^ \circ } = \dfrac{{\sqrt 3 }}{2}$ etc.
Complete step-by-step answer:
\[\left( {\text{i}} \right){\text{tan2}}\theta {\text{ = }}\dfrac{{2{\text{tan}}\theta }}{{1 - {\text{ta}}{{\text{n}}^2}\theta }}\]
On putting$\theta = {30^ \circ }$ in LHS, we get
$
\Rightarrow {\text{tan2}}\theta \\
\Rightarrow {\text{tan2(3}}{0^ \circ }) \\
\Rightarrow \tan {60^ \circ } \\
$
And we know, $\tan {60^ \circ } = \sqrt 3 $
Then,
$
\Rightarrow {\text{tan}}{60^ \circ } \\
\Rightarrow \sqrt 3 {\text{ ---------- eq}}{\text{.1}} \\
$
On putting$\theta = {30^ \circ }$ in RHS, we get
$
\Rightarrow \dfrac{{2{\text{tan}}\theta }}{{1 - {\text{ta}}{{\text{n}}^2}\theta }} \\
\Rightarrow \dfrac{{2{\text{tan3}}{0^ \circ }}}{{1 - {\text{ta}}{{\text{n}}^2}{{30}^ \circ }}} \\
$
And we know $\tan {30^ \circ } = \dfrac{1}{{\sqrt 3 }}$
Then,
$
\Rightarrow \dfrac{{2(\dfrac{1}{{\sqrt 3 }})}}{{1 - {{(\dfrac{1}{{\sqrt 3 }})}^2}}}{\text{ }} \\
\Rightarrow \sqrt 3 {\text{ -------- eq}}{\text{.2}} \\
$
From eq.1 and eq.2 we observe that
LHS=RHS Hence Proved
\[\left( {{\text{ii}}} \right){\text{tan2}}\theta {\text{ = }}\dfrac{{{\text{4tan}}\theta }}{{1 + {\text{ta}}{{\text{n}}^2}\theta }}\]
On putting$\theta = {30^ \circ }$ in LHS, we get
$
\Rightarrow {\text{tan2}}\theta \\
\Rightarrow {\text{tan2(3}}{0^ \circ }) \\
\Rightarrow {\text{tan}}{60^ \circ } \\
$
And we know, $\tan {60^ \circ } = \sqrt 3 $
Then,
$
\Rightarrow {\text{tan}}{60^ \circ } \\
\Rightarrow \sqrt 3 {\text{ --------- eq}}{\text{.3}} \\
$
On putting$\theta = {30^ \circ }$ in RHS, we get
$
\Rightarrow \dfrac{{{\text{4tan}}\theta }}{{1 + {\text{ta}}{{\text{n}}^2}\theta }} \\
\Rightarrow \dfrac{{{\text{4tan3}}{0^ \circ }}}{{1 + {\text{ta}}{{\text{n}}^2}{{30}^ \circ }}} \\
$
And we know $\tan {30^ \circ } = \dfrac{1}{{\sqrt 3 }}$
Then,
$
\Rightarrow \dfrac{{4(\dfrac{1}{{\sqrt 3 }})}}{{1 + {{(\dfrac{1}{{\sqrt 3 }})}^2}}} \\
\Rightarrow \sqrt 3 {\text{ ------- eq}}{\text{.4}} \\
$
From eq.3 and eq.4 we observe that
LHS=RHS Hence Proved
\[\left( {{\text{iii}}} \right){\text{cos2}}\theta {\text{ = }}\dfrac{{1 - {\text{ta}}{{\text{n}}^2}\theta }}{{1 + {\text{ta}}{{\text{n}}^2}\theta }}\]
On putting$\theta = {30^ \circ }$ in LHS, we get
$
\Rightarrow {\text{cos2}}\theta \\
\Rightarrow \cos {\text{2(3}}{0^ \circ }) \\
$
And, we $\cos {60^ \circ } = \dfrac{1}{2}$
$
\Rightarrow \cos {60^ \circ } \\
\Rightarrow \dfrac{1}{2}{\text{ -------- eq}}{\text{.5}} \\
$
On putting$\theta = {30^ \circ }$ in RHS, we get
$
\Rightarrow \dfrac{{1 - {\text{ta}}{{\text{n}}^2}\theta }}{{1 + {\text{ta}}{{\text{n}}^2}\theta }} \\
\Rightarrow \dfrac{{1 - {\text{ta}}{{\text{n}}^2}{{30}^ \circ }}}{{1 + {\text{ta}}{{\text{n}}^2}{{30}^ \circ }}} \\
$
And we know $\tan {30^ \circ } = \dfrac{1}{{\sqrt 3 }}$
Then,
$
\Rightarrow {\dfrac{{1 - {{(\dfrac{1}{{\sqrt 3 }})}^2}}}{{1 + {{(\dfrac{1}{{\sqrt 3 }})}^2}}}^{}}{\text{ }} \\
\Rightarrow \dfrac{1}{2}{\text{ ------- eq}}{\text{.6}} \\
$
From eq.5 and eq.6 we observe that
LHS=RHS Hence Proved
\[\left( {{\text{iv}}} \right){\text{cos3}}\theta {\text{ = 4co}}{{\text{s}}^3}\theta - 3{\text{cos}}\theta \]
On putting$\theta = {30^ \circ }$ in LHS, we get
$
\Rightarrow {\text{cos2}}\theta \\
\Rightarrow \cos 3{\text{(3}}{0^ \circ }) \\
$
And, we know ${\text{cos9}}{0^ \circ } = 0$
Then,
$
\Rightarrow \cos {90^ \circ } \\
\Rightarrow 0{\text{ -------eq}}{\text{.7}} \\
$
On putting$\theta = {30^ \circ }$ in RHS, we get
$
\Rightarrow 4{\text{co}}{{\text{s}}^3}\theta - {\text{3cos}}\theta \\
\Rightarrow 4{\text{co}}{{\text{s}}^3}{30^ \circ } - {\text{3cos}}{30^ \circ } \\
$
And, we know ${\text{cos 3}}{0^ \circ } = \dfrac{{\sqrt 3 }}{2}$
Then,
$
\Rightarrow 4{(\dfrac{{\sqrt 3 }}{2})^3} - 3(\dfrac{{\sqrt 3 }}{2}){\text{ }} \\
\Rightarrow 0{\text{ -------eq}}{\text{.8}} \\
$
From eq.7 and eq.8 we observe that
LHS=RHS Hence Proved
Note: Whenever you get this type of question the key concept to solve this question is to evaluate the separate Left Hand Side(LHS) and Right Hand Side(RHS) and check if both are the same then the given question is true otherwise false. And one more thing to remember is to learn the commonly used trigonometric angles values like $\tan {30^ \circ } = \dfrac{1}{{\sqrt 3 }},\cos {30^ \circ } = \dfrac{{\sqrt 3 }}{2}$ etc.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

