
If there differentiation is given as $\dfrac{d}{dx}G(x)=\dfrac{{{e}^{\tan x}}}{x},x\in \left( 0,\dfrac{\pi }{2} \right)$, then $\int\limits_{1/4}^{1/2}{\dfrac{2}{x}{{e}^{\tan \left( \pi {{x}^{2}} \right)}}}dx$ is equal to:
a) $G\left( \dfrac{\pi }{4} \right)-G\left( \dfrac{\pi }{16} \right)$
b) \[G\left( \dfrac{1}{\sqrt{2}} \right)-G\left( \dfrac{1}{2} \right)\]
c) \[\pi \left[ G\left( \dfrac{1}{2} \right)-G\left( \dfrac{1}{4} \right) \right]\]
d) $2\left[ G\left( \dfrac{\pi }{4} \right)-G\left( \dfrac{\pi }{16} \right) \right]$
Answer
586.8k+ views
Hint: We are given a function of derivative as: $\dfrac{d}{dx}G(x)=\dfrac{{{e}^{\tan x}}}{x},x\in \left( 0,\dfrac{\pi }{2} \right)$ We need to solve the given integral as: $\int\limits_{1/4}^{1/2}{\dfrac{2}{x}{{e}^{\tan \left( \pi {{x}^{2}} \right)}}}dx$. Let us assume that $I=\int\limits_{1/4}^{1/2}{\dfrac{2}{x}{{e}^{\tan \left( \pi {{x}^{2}} \right)}}}dx$. Now, multiply and divide I by \[\pi x\]. Then, let $\pi {{x}^{2}}=t$ and solve the integral. As we know that: \[\int\limits_{a}^{b}{F(x)dx}=\left. F(x) \right|_{a}^{b}=F(b)-F(a)\]. Now, use this identity to find the solution for $\int\limits_{1/4}^{1/2}{\dfrac{2}{x}{{e}^{\tan \left( \pi {{x}^{2}} \right)}}}dx$
Complete step-by-step solution:
As we have: $\dfrac{d}{dx}G(x)=\dfrac{{{e}^{\tan x}}}{x},x\in \left( 0,\dfrac{\pi }{2} \right).................(1)$
Since we have assumed that: $I=\int\limits_{1/4}^{1/2}{\dfrac{2}{x}{{e}^{\tan \left( \pi {{x}^{2}} \right)}}}dx...................(2)$
Now, multiply and divide the equation (2) by \[\pi x\], we get:
$I=\int\limits_{1/4}^{1/2}{\dfrac{2\pi x}{\pi {{x}^{2}}}{{e}^{\tan \left( \pi {{x}^{2}} \right)}}}dx……….........(3)$
Now, let: $\pi {{x}^{2}}=t..................(4)$
Now, differentiate the equation (4), we get:
$2\pi xdx=dt................(5)$
Therefore,
$\begin{align}
& x=\dfrac{1}{4}\to t=\dfrac{\pi }{16} \\
& x=\dfrac{1}{2}\to t=\dfrac{\pi }{4} \\
\end{align}$
Now, put the value of the equation (4) and the equation (5) in the equation (3), we get:
$I=\int\limits_{\pi /16}^{\pi /4}{\dfrac{{{e}^{\tan \left( t \right)}}}{t}}dt.................(6)$
As we know that, from the equation (1), $\dfrac{d}{dx}G(x)=\dfrac{{{e}^{\tan x}}}{x}$
Now, integrate the equation (1), we get:
$\int{\dfrac{d}{dx}G(x)}dx=\int{\dfrac{{{e}^{\tan x}}}{x}}dx................(7)$
Since we know that:
$\int{\dfrac{d}{dx}}F(x)dx=F(x)$
So, we can write the equation (7) as:
$G(x)=\int{\dfrac{{{e}^{\tan x}}}{x}}dx...................(8)$
Now, compare equation (6) with the equation (8), we get:
$\int\limits_{\pi /16}^{\pi /4}{\dfrac{{{e}^{\tan \left( t \right)}}}{t}}dt=G(t)..............(9)$
Now, by using the formula: \[\int\limits_{a}^{b}{F(x)dx}=\left. F(x) \right|_{a}^{b}=F(b)-F(a)\]
We get:
$\begin{align}
& \int\limits_{\pi /16}^{\pi /4}{\dfrac{{{e}^{\tan \left( t \right)}}}{t}}dt=\left\{ G(t) \right\}_{\pi /16}^{\pi /4} \\
& =G\left( \dfrac{\pi }{4} \right)-G\left( \dfrac{\pi }{16} \right)
\end{align}$
Hence, option (a) is the correct answer.
Note: While applying the substitution method to solve the integral, be careful to change the upper limit and lower limit of the integral. Students might forget to change the limits which give a wrong answer. Also, we are given a derivative of the function whose integral is required. So, try to make an equation so that we can use the formula: $\int{\dfrac{d}{dx}}F(x)dx=F(x)$. It makes the solution easier.
Complete step-by-step solution:
As we have: $\dfrac{d}{dx}G(x)=\dfrac{{{e}^{\tan x}}}{x},x\in \left( 0,\dfrac{\pi }{2} \right).................(1)$
Since we have assumed that: $I=\int\limits_{1/4}^{1/2}{\dfrac{2}{x}{{e}^{\tan \left( \pi {{x}^{2}} \right)}}}dx...................(2)$
Now, multiply and divide the equation (2) by \[\pi x\], we get:
$I=\int\limits_{1/4}^{1/2}{\dfrac{2\pi x}{\pi {{x}^{2}}}{{e}^{\tan \left( \pi {{x}^{2}} \right)}}}dx……….........(3)$
Now, let: $\pi {{x}^{2}}=t..................(4)$
Now, differentiate the equation (4), we get:
$2\pi xdx=dt................(5)$
Therefore,
$\begin{align}
& x=\dfrac{1}{4}\to t=\dfrac{\pi }{16} \\
& x=\dfrac{1}{2}\to t=\dfrac{\pi }{4} \\
\end{align}$
Now, put the value of the equation (4) and the equation (5) in the equation (3), we get:
$I=\int\limits_{\pi /16}^{\pi /4}{\dfrac{{{e}^{\tan \left( t \right)}}}{t}}dt.................(6)$
As we know that, from the equation (1), $\dfrac{d}{dx}G(x)=\dfrac{{{e}^{\tan x}}}{x}$
Now, integrate the equation (1), we get:
$\int{\dfrac{d}{dx}G(x)}dx=\int{\dfrac{{{e}^{\tan x}}}{x}}dx................(7)$
Since we know that:
$\int{\dfrac{d}{dx}}F(x)dx=F(x)$
So, we can write the equation (7) as:
$G(x)=\int{\dfrac{{{e}^{\tan x}}}{x}}dx...................(8)$
Now, compare equation (6) with the equation (8), we get:
$\int\limits_{\pi /16}^{\pi /4}{\dfrac{{{e}^{\tan \left( t \right)}}}{t}}dt=G(t)..............(9)$
Now, by using the formula: \[\int\limits_{a}^{b}{F(x)dx}=\left. F(x) \right|_{a}^{b}=F(b)-F(a)\]
We get:
$\begin{align}
& \int\limits_{\pi /16}^{\pi /4}{\dfrac{{{e}^{\tan \left( t \right)}}}{t}}dt=\left\{ G(t) \right\}_{\pi /16}^{\pi /4} \\
& =G\left( \dfrac{\pi }{4} \right)-G\left( \dfrac{\pi }{16} \right)
\end{align}$
Hence, option (a) is the correct answer.
Note: While applying the substitution method to solve the integral, be careful to change the upper limit and lower limit of the integral. Students might forget to change the limits which give a wrong answer. Also, we are given a derivative of the function whose integral is required. So, try to make an equation so that we can use the formula: $\int{\dfrac{d}{dx}}F(x)dx=F(x)$. It makes the solution easier.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

